[image: https://wiki.opnfv.org/_media/logo.png]	OPNFV_Doctor_D1

	Title:
	Doctor: Fault Management and Maintenance

	
	

	OPNFV project:
	Doctor https://wiki.opnfv.org/doctor

	
	

	Editors:
	Ashiq Khan (NTT DOCOMO, khan@nttdocomo.com),
Gerald Kunzmann (NTT DOCOMO, kunzmann@docomolab-euro.com)

	Authors:
	Ryota Mibu (NEC, r-mibu@cq.jp.nec.com)

	
	Carlos Goncalves (NEC, Carlos.Goncalves@neclab.eu)

	
	Tomi Juvonen (Nokia, tomi.juvonen@nsn.com)

	
	…

	
	

	
	

	Project creation: date:
	2014-12-02

	Submission date:
	[bookmark: date]2015-03-XX

	
	

	

[bookmark: Abstract]ABSTRACT: “Doctor” is an OPNFV requirement project. Its scope is NFVI fault management and maintenance and it aims at developing and realizing the consequent implementation for the OPNFV reference platform.

This deliverable is …

Definition of terms:	Comment by Gerald Kunzmann: Please use this syntax throughout the document:
https://etherpad.opnfv.org/p/opnfv_terminology
Different SDOs and communities use different terminology related to NFV / Cloud / SDN. This list tries to define an OPNFV terminology, mapping/translating the OPNFV terms to terminology used in other contexts.
· NFVI: Virtualization Infrastructure such as HV
· (ESTI NFV) NFVI: totality of all hardware and software components which build up the environment in which VNFs are deployed
· Virtual Resource: e.g. a Virtual Machine (VM), virtual network
· Consumer: (User-/admin-side) Manager, VNFM or Orchestrator	Comment by docomo: proposal to distinguish between Consumer and Administrator
· Controller: VIM
· VNF
·

· NFVI: Virtualization Infrastructure such as HV; totality of all hardware and software components which build up the environment in which VNFs are deployed
· VIM: Virtualised Infrastructure Manager. functional block that is responsible for controlling and managing the NFVI compute, storage and network resources, usually within one operator's Infrastructure Domain (e.g. NFVI-PoP)
· NFVO: Network Functions Virtualisation Orchestrator. Functional block that manages the Network Service (NS) lifecycle and coordinates the management of NS lifecycle, VNF lifecycle (supported by the VNFM) and NFVI resources (supported by the VIM) to ensure an optimized allocation of the necessary resources and connectivity
· VNFM: Virtualised Network Function Manager. functional block that is responsible for the lifecycle management of VNF
· Consumer: User-side Manager; Consumer of the interfaces produced by the VIM; VNFM, NFVO, or Orchestrator in ETSI NFV terminology.
· Administrator: e.g. OpenStack Cloud Administrator [6] e.g. OAM in Telco context
· Virtual Machine (VM): virtualized computation environment that behaves very much like a physical computer/server
· Virtualised Storage: virtualised non-volatile storage allocated to a VM
· Virtual network: virtual network routes information among the network interfaces of VM instances and physical network interfaces, providing the necessary connectivity
· Virtual Resource: a Virtual Machine (VM), a virtual network, or virtualised storage.
· VNF: Virtualised Network Function. Implementation of an Network Function that can be deployed on a Network Function Virtualisation Infrastructure (NFVI)

[bookmark: _Toc413676180]Table of content

Table of content	3
1	Introduction [editor: Ashiq]	5
2	Use cases and scenarios [editor: Ashiq]	5
2.1	Faults	6
2.1.1	Fault management using ACT-STB configuration	6
2.1.2	Recovery based on fault prediction	7
2.2	NFVI Maintenance	7
2.2.1	VM Retirement	7
3	High level architecture and general features [editor: Ashiq?] + Tommy (Ericsson)	8
3.1	Functional overview [Tommy]	8
3.1.1	Failures of virtualised resources	9
3.1.2	Planned maintenance of virtualized resources	9
3.2	Architecture Overview	9
3.3	General Features	10
3.3.1	Detection	10
3.3.2	Cognition	10
3.3.3	Notification	11
3.3.4	Recovery Action	11
3.4	High level northbound interface specification [authors: Ashiq, Gerald, Ryota]	11
3.4.1	Fault management	11
3.4.2	NFVI Maintenance	13
3.5	Information elements and parameters	14
3.6	Faults [author: Gerald]	14
4	Gap analysis in upstream projects [editor: Carlos] [authors: Gerald, Carlos, Tomi, Ryota]	16
4.1	VIM Northbound Interface	16
4.1.2	VIM Southbound interface	17
4.2	OpenStack	18
4.2.1	Ceilometer	18
4.2.2	Nova	18
4.2.3	Monasca	19
4.3	Hardware monitoring tools	20
4.3.1	Zabbix	20
5	Detailed implementation plan [editor: Ryota] [authors: Gerald, Carlos, Tomi, Ryota]	20
5.1	Functional Blocks	21
5.1.1	Monitor	21
5.1.2	Inspector	21
5.1.3	Controller	21
5.1.4	Notifier	22
5.2	Sequence	22
5.2.1	Fault Management	22
5.2.2	NFVI Maintenance	24
5.3	Implementation plan for Release 1	26
5.3.1	Fault management	26
5.3.2	NFVI Maintenance	27
5.4	Information elements	27
5.5	Detailed northbound interface specification	28
5.5.1	Fault management interface	28
5.5.2	NFVI maintenance	30
5.6	Blueprints	33
5.6.1	Instance State Notification (Ceilometer)	33
5.6.2	Event Publisher for Alarm (Ceilometer)	33
5.6.3	Notification-driven alarm evaluator (Ceilometer)	33
5.6.4	Report host fault to update server state immediately (Nova)	33
5.6.5	Other related BPs	34
6	Summary and conclusion [editor: Ashiq] [authors: Gerald, …]	34
6.1	Future plan	34
7	References and bibliography	34
Table of content	3
1	Introduction [editor: Ashiq]	5
2	Use cases and scenarios [editor: Ashiq]	5
2.1	Faults	6
2.1.1	Fault management using ACT-STB configuration	6
2.1.2	Recovery based on fault prediction	7
2.2	Maintenance	7
2.2.1	VM Retirement	7
3	High level architecture and general features [editor: Ashiq?] + Tommy (Ericsson)	8
3.1	Functional overview [Tommy]	8
3.1.1	Failures of virtualised resources	9
3.1.2	Planned maintenance of virtualized resources	9
3.2	Architecture Overview	9
3.3	General Features	10
3.3.1	Detection	10
3.3.2	Cognition	11
3.3.3	Notification	11
3.3.4	Recovery Action	11
3.4	High level northbound interface specification [authors: Ashiq, Gerald]	12
3.4.1	Fault management	12
3.4.2	NFVI Maintenance	12
3.5	High level northbound interface specification [authors: Ashiq + Ryota]	13
3.6	Faults [author: Gerald]	13
4	Gap analysis in upstream projects [editor: Carlos] [authors: Gerald, Carlos, Tomi, Ryota]	15
4.1	OpenStack	15
4.1.1	Ceilometer	15
4.1.2	Nova	17
4.1.3	Monasca	18
4.1.4	Ironic (?)	19
4.2	Hardware monitoring tools	19
4.2.1	Zabbix	19
4.3	Others	19
4.3.1	VIM Southbound interface	19
5	Detailed implementation plan [editor: Ryota] [authors: Gerald, Carlos, Tomi, Ryota]	20
5.1	Functional Blocks	20
5.1.1	Monitor	20
5.1.2	Inspector	20
5.1.3	Controller	20
5.1.4	Notifier	21
5.2	Sequence	21
5.3	Information elements	21
5.4	Detailed northbound interface specification	21
6	Summary and conclusion [editor: Ashiq] [authors: Gerald, …]	22
6.1	Future plan	22
7	References and bibliography	22

[bookmark: _Toc383524388][bookmark: _Toc384712305][bookmark: _Toc384917212][bookmark: _Toc387007469][bookmark: _Toc387056323][bookmark: _Toc387696682][bookmark: _Toc388477680][bookmark: _Toc388642784][bookmark: _Toc390258348][bookmark: _Toc391318363][bookmark: _Toc391389942][bookmark: _Toc391390130][bookmark: _Toc391948644][bookmark: _Toc392440625][bookmark: _Toc399131049][bookmark: _Toc403768116]

[bookmark: _Toc413676181]Introduction [editor: Ashiq]
The goal of this project is to build a fault management and maintenance framework supporting Network Services on top of virtualized infrastructure. The key feature is immediate notification of unavailability of virtualized resources from VIM, to support the recovery of VNFs running on them. Requirement survey and development of missing features in NFVI and VIM are in scope of this project in order to fulfil requirements for fault management and maintenance in NFV.
The purpose of this requirement project is to clarify the necessary features of NFVI fault management and maintenance, identify missing features in the current OpenSource implementation, provide implementation guideline in relevant upstream project to realize those missing features, and define the VIM northbound interfaces necessary to perform the task of NFVI fault management and maintenance in ETSI NFV context [1], the list of gaps in upstream projects, potential implementation architecture and plan, and the VIM northbound interface specification for resource reservation and capacity management.

Problem description
A Virtualised Infrastructure Manager (VIM), e.g. OpenStack, cannot detect certain Network Functions Virtualisation Infrastructure (NFVI) faults, i.e. Resource Pool faults. This feature is necessary to detect the faults and notify the Consumer in order to ensure the proper functioning of EPC VNFs like MME and S/P-GW.
· EPC VNFs are often in active standby (ACT-SBY) configuration and need to switch to SBY mode as soon as relevant faults are detected in the active (ACT) VNF.
· NFVI encompasses all elements building up the environment in which VNFs are deployed, e.g., Physical Machines, Hypervisors, Storage, and Network elements.
In addition, VIM, e.g. OpenStack, needs to receive maintenance instructions from the Consumer, i.e. the operator/administrator of the VNF.
· Change the state of certain Physical Machines (PMs), e.g. empty the PM, so that maintenance work can be performed at these machines.
Note: Although fault management and maintenance are different operations in NFV, both are considered as part of this project as –except for the trigger- they share a very similar work and message flow. Hence, from implementation perspective, these two are kept together in the Doctor project because of this high degree of similarity.

Features	Comment by docomo: move to Chapter 2 ?!?
· Detect unavailability of physical resources (receive failure/maintenance notification from various functions)
· Unavailability of physical resource is detected by various functions monitoring and/or managing individual H/W and S/W components
· The cause of unavailability of physical resource to detect shall be configurable
· Identify affected virtualized resources
· Execute actions to process fault recovery and maintenance
The features are explained in more detail in Section 3.3.
[bookmark: _Toc413676182]Use cases and scenarios [editor: Ashiq]	Comment by AK: User/Client in this section and in the next section has been used in two different ways (although, the meaning is the same). Needs unification.
DONE	Comment by Tommy Lindgren (2): The main changes proposed in this document are about making a clear distinction between fault management and recovery within the VIM/NFVI on one side and High Availability support for VNFs on the other, claiming that HA support within a VNF or as a service from the platform is outside the scope of Doctor. Doctor should focus on detecting and remediating faults in the infrastructure. This will ensure that applications come back to a fully redundant configuration faster than before.
Telecom nodes often have very high requirements on service performance. As a consequence they often utilize redundancy and high availability (HA) mechanisms. The HA support may be built-in or provided by the platform. In any case, the HA support typically has a very fast detection and reaction time to minimize service impact. HA support for OPNFV is discussed in the High Availability for OPNFV project.
 As an example, these nodes can come in an Active-Standby (ACT-SBY) configuration which is a (1+1) redundancy scheme. ACT and SBY nodes (aka Physical Network Function (PNF) in ETSI NFV terminology) are in a hot standby configuration. If an ACT node is unable to function properly due to fault or any other reason, the SBY node is instantly made ACT, and affected services can be provided without any service interruption.
The ACT-SBY configuration needs to be maintained. This means, when a SBY node is made ACT, either the previously ACT node, after recovery, shall be made SBY, or, a new SBY node needs to be configured. The actual operations to instantiate/configure a new SBY are similar to instantiating a new VNF and therefore are outside the scope of this project.
The NFVI fault management and maintenance requirements aim at providing fast failure detection of physical and virtualised resources and remediation of the virtualised resources provided to Consumers according to their predefined request to enable applications to recover to a fully redundant mode of operation. 	Comment by Tommy Lindgren (2): I suggest a somewhat different way of expressing it to avoid mixing it up with HA support, trying to highlight that the main goal is to restore redundancy.
The following three use cases show typical requirements and solutions for automated fault management and maintenance in NFV. The use cases assume that the VNFs are in an ACT-SBY configuration.	Comment by Tommy Lindgren (2): What about “Detection and remediation”?
1. Fault management using ACT-STB configurationAuto Healing (Triggered by critical error)	Comment by Gerald Kunzmann: use different term as “auto healing” may indicate that the VIM is doing some auto-recovery to solve the fault without fault notification through the NB I/F
2. Recovery based on fault prediction (Preventing service stop by handling warnings)
3. VM Retirement (Managing service while H/W maintenance)

[bookmark: _Toc413676183]Faults
[bookmark: _Ref412444953][bookmark: _Toc413676184]Auto healingFault management using ACT-STB configuration
Auto healing is the process of switching to SBY when the ACT VNF is affected by a fault, and instantiating/configuring a new SBY for the new ACT VNF.
In Figure 1, a system-wide view of relevant functional blocks is presented. OpenStack is considered as the VIM implementation (aka Controller) which has interfaces with the Resource Pool (NFVI in ETSI NFV terminology) and the Consumers. The VNF implementation is represented as different virtual resources marked by different colours. Consumers (VNFM or NFVO in ETSI NFV terminology) own/manage the respective virtual resources shown with the same colours.
[image: https://wiki.opnfv.org/_media/requirements_projects/fig_1_fault.png]	Comment by Gerald Kunzmann: TODO: update

VIM, e.g. OpenStack
Consumer
[bookmark: _Ref411948968]Figure 1 - Fault management use case

The first requirement in this use case is that the Controller needs to detect faults in the Resource Pool (“1. Fault Notification” in Figure 1) affecting the proper functioning of the virtual resources (labelled as VM-x) running on top of it. It should be possible to configure which relevant fault items should be detected. The VIM (e.g. OpenStack) itself could be extended to detect such faults. Alternatively, a third party fault monitoring tool could be used which then informs the VIM about such faults; this third party fault monitoring element can be considered as a component of VIM from an architectural point of view.
Once such fault is detected, the VIM shall find out which virtual resources are affected by this fault. In the example in Figure 1, VM-4 is affected by a fault in the Hardware Server-3. Such mapping shall be maintained in the VIM, depicted as the “Server-VM info” table inside the VIM.
Once the VIM has identified which virtual resources are affected by the fault, it needs to find out who is the Consumer (i.e. the owner/manager) of the affected virtual resources (Step 2). In the example shown in Figure 1, the VIM knows that for the red VM-4, the manager is the red Consumer through an Ownership info table. The VIM then notifies (Step 3 “Fault Notification”) the red Consumer about this fault, preferably with sufficient abstraction rather than detailed physical fault information.
The Consumer then switches to SBY configuration by switching the SBY VNF to ACT state. It further initiates a process to instantiate/configure a new SBY. However, switching to SBY mode and creating a new SBY machine is a VNFM/NFVO level operation and therefore outside the scope of this project. Doctor project does not create interfaces for such VNFM level configuration operations.	Comment by Tommy Lindgren (2): I agree and I think it is very important. A user/client receiving a notification may choose to use any available VIM interface, but Doctor will not provide a dedicated interface for recovery.
DONE
Once the Consumer has switched to SBY configuration, it notifies (Step 4 “Instruction” in Figure 1) the VIM. The VIM can then take necessary (e.g. pre-determined by the involved network operator) actions on how to clean up the fault affected VMs (Step 5 “Execute Instruction”).
The key issue in this use case is that a VIM (OpenStack in this context) shall not take a standalone fault recovery action (e.g. migration of the affected VMs) before the ACT-SBY switching is complete, as that might violate the ACT-SBY configuration and render the VNF out of service.

[bookmark: _Toc413676185] Recovery based on fault prediction
The fault management scenario explained in Clause 2.1.1 can also be performed based on fault prediction. In such cases, in VIM, there is an intelligent fault prediction module which, based on its NFVI monitoring information, can predict an eminent fault in the elements of NFVI. A simple example is raising temperature of a Hardware Server which might trigger a pre-emptive recovery action. The requirements of such fault prediction in the VIM are investigated in the OPNFV “Fault prediction” project.
This use case is very similar to “Fault management using ACT-STB configuration” in Clause 2.1.1. Instead of a fault detection (Step 1 “Fault Notification in” Figure 1), the trigger comes from a fault prediction module in the VIM, or from a third party module which notifies the VIM about an eminent fault. From Step 2~5, the work flow is the same as in the “Fault management using ACT-STB configuration” use case, except in this case, the Consumer of a VM/VNF switches to SBY configuration based on a predicted fault, rather than an occurred fault.

[bookmark: _Toc413676186]NFVI Maintenance
[bookmark: _Toc413676187]VM Retirement
All network operators perform maintenance of their network infrastructure, both regularly and irregularly. Besides the hardware, virtualization is expected to increase the number of elements subject to such maintenance as NFVI holds new elements like the hypervisor and host OS. Maintenance of a particular resource element e.g. hardware, hypervisor etc. may render a particular server hardware unusable until the maintenance procedure is complete.
However, the Consumer of VMs needs to know that such resources will be unavailable because of NFVI maintenance. The following use case is again to ensure that the ACT-SBY configuration is not violated. A stand-alone action (e.g. live migration) from VIM/OpenStack to empty a physical machine so that consequent maintenance procedure could be performed may not only violate the ACT-SBY configuration, but also have impact on real-time processing scenarios where dedicated resources to virtual resources (e.g. VMs) are necessary and a pause in operation (e.g. vCPU) is not allowed. The Consumer is in a position to safely perform the switch between ACT and SBY nodes, or switch to an alternative VNF forwarding graph so the hardware servers hosting the ACT nodes can be emptied for the upcoming maintenance operation. Once the target hardware servers are emptied (i.e. no virtual resources are running on top), the VIM can mark them with an appropriate flag (i.e. “maintenance” state) such that these servers are not considered for hosting of virtual machines until these the maintenance flag is cleared (i.e. nodes are back in “normal” status).
A high-level view of the maintenance procedure is presented in Figure 2. VIM/OpenStack, through its northbound interface, receives a maintenance notification (Step 1 “Maintenance Instruction”) from the Administrator (e.g. a network operator) including information about which hardware is subject to maintenance. Maintenance operations include replacement/upgrade of hardware, update/upgrade of the hypervisor/host OS, etc.
The consequent steps to enable the Consumer to perform ACT-SBY switching are very similar to the fault management scenario. From VIM/OpenStacks internal database, it finds out which virtual resources (VM-x) are running on those particular Hardware Servers and who are the managers of those virtual resources (Step 2). The VIM then informs the respective Consumer (VNFMs or NFVO) in step 3 “Maintenance Notification”. Based on this, the Consumer takes necessary actions (e.g. switch to SBY configuration or switch VNF forwarding graphs) and then notifies (Step 4 “Instruction”) the VIM. Upon receiving such notification, the VIM takes necessary actions (Step 5 “Execute Instruction” to empty the Hardware Servers so that consequent maintenance operations could be performed. Due to the similarity for Steps 2~5, the maintenance procedure and the fault management procedure are investigated in the same project.

[image: fig_2_fault.png]	Comment by Gerald Kunzmann: TODO: update
(see above)
[bookmark: _Ref412447589]Figure 2 - Maintenance use case

[bookmark: _Toc413676188]High level architecture and general features [editor: Ashiq?] + Tommy (Ericsson)

[bookmark: _Toc413676189]Functional overview [Tommy]
The Doctor project circles around two distinct use cases: 1) management of failures of virtualized resources and 2) planned maintenance, e.g. migration, of virtualized resources. Both of them may affect a VNF/application and the network service it provides, but there is a difference in frequency and how they can be handled.
Failures are spontaneous events that may or may not have an impact on the virtual resources. The Consumer should as soon as possible react on the failure by switching to the STB node. The VIM should as soon as possible repair the lost services, i.e. restore the VM, VLAN or virtualized storage. How much the applications are affected varies. Applications with built-in HA support might experience a short decrease in retainability (e.g. an ongoing session might be lost) while keeping availability (establishment or re-establishment of sessions are not affected), whereas the impact on applications without built-in HA may be more serious. How much the network service is impacted depends on how the service is implemented. With sufficient network redundancy the service may be unaffected even when a specific resource fails. 	Comment by docomo: NO, the Consumer should decide about this!
TODO: Update this paragraph.
Planned maintenance impacting virtualized resources on the other hand are events that are known in advance. This group includes e.g. migration due to SW upgrade of a compute host but also covers events like addition or removal of VMs due to scaling out/in, change of CM characteristics due to scaling up/down and SW upgrades. Some of these might have been requested by the application or its management solution, but there is also a need for coordination on the actual operations on the virtual resources, There may be an impact on the applications and the service, but since they are not spontaneous events there is room for planning and coordination between the application management organization and the infrastructure management organization, including performing whatever actions that would be required to minimize the problems.	Comment by docomo: ?
Failure prediction is the process of pro-actively identifying situations that may lead to a failure in the future unless acted on by means of maintenance activities. From application point of view, failure prediction may impact them in two ways: either the warning time is so short that the application or its management solution does not have time to react, in which case it is equal to the failure scenario, or there is sufficient time to avoid the consequences by means of maintenance activities, in which case it is similar to planned maintenance.
[bookmark: _Toc413676190]Failures of virtualised resources	Comment by docomo: TODO: Check overlap with general features
The functionalities related to failures of virtualised resources are:
Monitoring
The VIM shall monitor physical and virtual resources for unavailability and suspicious behaviour.
The physical resources are typically physical compute hosts, physical switches, physical storage equipment, but also additional equipment like fans, power supplies etc. The virtual resources are typically host OS, hypervisors, VLANs and virtual machines.
Detection
The VIM shall detect failures in physical and virtual resources in an unambiguous way. This may include also predicting upcoming faults. Note, fault prediction is out of scope of this project and is investigated in the OPNFV “Fault prediction” project.
Correlation
The VIM shall correlate each fault to the impacted virtual resource and make the alarm available over the northbound interface such that the Consumers impacted by the failure can take appropriate actions to recover from the failure.
Remediation
The VIM shall recover the failed virtual resources according to the default behaviour defined for that resource. In principle it means that an application can define which actions that can be taken. Examples are restart of the VM, migration of the VM or no action. However, this recovery operation in the VIM shall be coordinated by the Consumer.

[bookmark: _Toc413676191]Planned maintenance of virtualized resources
The functionality is to be described.

[bookmark: _Toc413676192]Architecture Overview
NFV and Cloud platform provide virtual resources and control functionality of them to users and administrators.
Figure 3 shows the high level architecture of NFV focusing on the NFVI, i.e. the virtualized infrastructure.
The NFVI provides virtual resources, such as virtual machines (VM) and virtual networks. Those virtual resources are used to run applications that could be component of a network service which is managed by the consumer(s) of the NFVI. The Virtualized Infrastructure Manager (VIM) provides functionalities of controlling and viewing virtual resources on hardware (physical) resources to the consumers, i.e. users and administrators. OpenStack is a prominent candidate for this VIM. The administrator may control the NFVI without using the VIM.	Comment by docomo: What is the implication of this statement in the context of Doctor?
[image:][image:]	Comment by docomo: AK: better use an equivalent symbol (or “i.e.”) than the equal symbol.
DONE	Comment by Gerald Kunzmann: https://wiki.opnfv.org/?ns=doctor%3A&image=doctor%3Adoctor.201502.rev.0.1.pptx&do=media&tab_files=files&tab_details=view
[bookmark: _Ref411865657][bookmark: _Ref411865652]Figure 3 - High level architecture

Although OpenStack is the target upstream project where the new functional elements (Controller, Notifier, Monitory, and Inspector) are expected to be implemented, a particular implementation method is not assumed. Some of these elements may sit outside OpenStack and offer a northbound interface to OpenStack.

[bookmark: _Toc413676193][bookmark: _Ref413676328]General Features
The following features are required for the Virtualized Infrastructure Manager (VIM) to achieve high availability of applications (e.g. MME, S/P-GW) and the Network Services.
[bookmark: _Toc413676194]Detection
VIM should detect unavailability of physical resources that might be cause errors/faults in virtual resources running on top of them. Unavailability of physical resource is detected by various monitoring and managing tools for hardware and software components.
The fault items/events to be detected shall be configurable.
The configuration shall enable Failure Selection and Aggregation. Failure aggregation means VIM can find out unavailability of physical resource from more than two non-critical failures related to the same resource.
There are two types of unavailability - immediate and future:
· Immediate unavailability can be detected by setting traps of raw failures on hardware monitoring tools.
· Future unavailability can be found by receiving maintenance instructions issued by the administrator of the physical resource pool or by failure prediction mechanisms.

[bookmark: _Toc413676195]Cognition
VIM shall identify unavailability of virtualized resources that are or will be affected by failures on the physical resources under them. Unavailability of virtualized resource is found by referring to the mapping of physical and virtualized resources.
The relation from physical resources to virtualized resources shall be configurable, as the cause of unavailability of virtualized resources can be different in technologies and policies of deployment.
Failure aggregation is also required in this feature, e.g., a user may request more than two failures on standby VMs in an (N+M) deployment model.

[bookmark: _Toc413676196]Notification
There are two types of notifications: a) notification about events of virtualized resource and b) notification on the update of the capacity of a resource pool.
The VIM shall notify the unavailability of virtual resources to the consumer owning it.
The VIM shall also notify the unavailability of physical resources to its administrator.
All notifications shall be transferred immediately in order to minimize the stalling time of the network service and to avoid over assignment caused by delay of capability updates.

There may be multiple consumers, so the VIM has to find out the owner of an faulty resource. Moreover, there may be a large number of virtual and physical resources in a real deployment, so polling the state of all resources to the VIM would lead to heavy signalling traffic. Thus, a publication/subscription messaging model is better suited for these notifications, as notifications are only sent to subscribed consumers .
Note: the VIM should only accept individual notification URLs for each resource by its owner or administrator.
Notifications reporting to the consumer about the unavailability of virtualized resources are including a description of the fault. Flexibility in the notifications is important, for example the receiver function in the consumer-side implementation could have different schema, location, and policies (e.g. receive or not, aggregate events with the same cause, etc).

[bookmark: _Toc413676197]Recovery Action
The VIM is required to execute actions to process fault recovery and maintenance operations. All actions, done by the VIM and the NFVI after receiving those notifications, should be instructed/coordinated by the consumer (.i.e. the owner) of the resources or their administrator. Note, that instructions from the consumer to the VIM are not always required after such notifications.

(Option) For prompt recovery of faults, the VIM could have an additional feature to automate recovery actions for certain faults.
A delegated action could be automatically processed by the VIM if was already instructed earlier how to treat such type of faults, e.g, the VIM could automatically evacuate VM which are labelled with ‘allow live-migration’ by the owner of the VM.

[bookmark: _Toc413676198]High level northbound interface specification [authors: Ashiq, Gerald, Ryota]
[bookmark: _Toc413676199]Fault management
This interface allows the Consumer to subscribe to fault notification from the VIM. Using a filter, the Consumer can narrow down which faults should be notified. A fault notification will trigger the Consumer to switch from ACT to SBY configuration and initiate fault recovery actions. A fault query request/response message exchange allows the Consumer to find out about active alarms at the VIM. A filter can be used to narrow down the alarms returned in the response message.

[bookmark: _Ref413232828][image:]
Figure 4 - High-level message flow for fault management

The high level message flow for the fault management use case is shown in
Figure 4Figure 4. It consists of the following steps:
Step 1:	Request to subscribe to monitor specific virtual resources. A query filter can be used to narrow down the alarms the Consumer wants to be informed about.
Step 2:	Request to update an existing subscription, either to remove/add virtual resources to be monitored or to update/remove the query filter.
Step 3:	Each subscription (update) request is acknowledged with a subscribe response message. The response message contains information about the subscribed virtual resources, in particular if a subscribed virtual resource is in “alarm” state.
Step 4:	The NFVI sends monitoring events for resources the VIM has been subscribed to. Note: this subscription message exchange between the VIM and NFVI is not shown in this message flow.
Step 5:	Event correlation, fault detection and aggregation in VIM.
Step 6:	Database lookup to find the virtual resources affected by the detected fault.
Step 7:	Fault notification to Consumer.
Step 8:	The Consumer switches to standby configuration (SBY)
Step 9:	Instructions to VIM requesting certain actions to be performed on the affected resources, for example migrate/update/terminate specific resource(s). After reception of such instructions, the VIM is executing the requested action, e.g. it will migrate or terminate a virtual resource.
Step 10: Query request from Consumer to VIM to get information about the current status of a resource.
Step 11: Response to the query request with information about the current status of the queried resource. In case the resource is in “fault” state, information about the related fault(s) is returned.
[image:]
Step 1:	Fault detection/notification
Step 2:	Fault/event correlation and aggregation in VIM
Step 3:	 Database lookup to find affected virtual resources
Step 4:	Fault notification to consumer (user-side manager) and decision at consumer side on appropriate action to resolve the fault, e.g. switch to hot standby or live migration of the affected virtual resource
Step 5:	Acknowledgement of fault notification. This message may for example be used to “clear” an alarm, as the Consumer had already initiated some fault recovery action related to this alarm based on a different fault notification received earlier.
Step 6:	Instructions to VIM requesting certain actions to be performed, for example migrate/update/terminate specific resource(s). After reception of such instructions, the VIM is executing the requested action, e.g. it will migrate or terminate a virtual resource.

Internal Note: Aligned with [IFA006_Virtualized_Resources_Fault_Management]

[bookmark: _Toc413676200]NFVI Maintenance
The NFVI maintenance interface allows the Administrator to notify the VIM about a planned maintenance operation on the NFVI. A maintenance operation may for example be an update of the server firmware or the hypervisor. The MaintenanceRequest message contains instructions to change the state of the resource from “normal” to “maintenance”. After receiving the MaintenanceRequest, the VIM will notify the Consumer about the planned maintenance operation, whereupon the Consumer will switch to standby (SBY) configuration to allow the maintenance action to be executed. After the request was executed successfully (i.e., the physical resources have been emptied) or the operation resulted in an error state, the VIM sends a MaintenanceResponse message back to the Administrator.
Maintenance operations include:
· …TBD

[image:]
[image:]
Figure 5 - High-level message flow for NFVI maintenance

The high level message flow for the NFVI maintenance use case is shown in Figure 5. It consists of the following steps:
Step 1:	Subscribe/response signalling to subscribe to fault/maintenance notifications.
Step 2:	Maintenance trigger received from administrator.
Step 3:	VIM switches NFVI resources to “maintenance” state. This, e.g., means they should not be used for further allocation/migration requests
Step 4:	Database lookup to find the virtual resources affected by the detected maintenance operation.
Step 5:	Maintenance notification to Consumer .
Step 6:	The Consumer switches to standby configuration (SBY)
Step 7:	Instructions from Consumer to VIM requesting certain recovery actions to be performed (step 7a). After reception of such instructions, the VIM is executing the requested action in order to empty the physical resources (step 7b).
Step 8:	Maintenance response from VIM to inform the Administrator that the physical machines have been emptied (or the operation resulted in an error state).
Step 9:	Administrator is coordinating and executing the maintenance operation/work on the NFVI.
Step 10: Query request from Consumer to VIM to get information about the current state of a resource.
Step 11: Response to the query request with information about the current state of the queried resource(s). In case the resource is in “maintenance” state, information about the related maintenance operation is returned.

[bookmark: _Toc413676201]Information elements and parameters
Raw list of information elements and parameters (please refer to Section XXX for a more detailed specification of information elements).
· Fault Notification
· VirtualResourceID: identifies the virtual resource that is affected by a fault on the underlying physical resource
· FaultID: identifies the related fault in the underlying physical resource. This can be used to correlate different fault notifications caused by the same fault in the physical resource.
· FaultDetails: provides more detailed information about the fault.
· Maintenance Request/Response
· (Physical)ResourceID: identifies the physical resource on which the maintenance action is planned.
· State = “maintenance”: requests the VIM to change the state of the resource to maintenance. State may also be set to “normal” after the maintenance action has been performed (or was canceled).
· Result: informs the Administrator about the new state of the resource. It can also provide additional meta-data, e.g. on whether the request had been processed successfully or had resulted in an error.
· State Change Notification
· VirtualResourceID: see above

[bookmark: _Toc413676202]Faults [author: Gerald]
Faults in the listed elements need to be immediately notified to the VNFM in order to perform an immediate action like live migration or switch to a hot standby entity. In addition, a maintenance action should be triggered to, e.g., reboot the server or replace a defect hardware element.
Faults can be of different severity, i.e. critical, warning, maintenance, or info. Critical faults require immediate action as a severe degradation of the system has happened or is expected. Warnings indicate that the system performance is going down: related actions include closer (e.g. more frequent) monitoring of that part of the system or preparation for a cold migration to a backup VM. Type maintenance may trigger maintenance actions like a re-boot of the server or replacement of a faulty, but redundant HW. Info messages do not require any action.
Faults can be gathered by, e.g., enabling SNMP and installing some open source tools to catch and poll SNMP. When using for example Zabbix one can also put an agent running on the hosts to catch any other fault. Table 1Table 1 provides a list of high level faults that are considered within the scope of the Doctor project requiring immediate action by the VNFM.

[bookmark: _Ref411006936]Table 1 - High level list of faults
	Service
	Fault
	Severity
	How to detect?
	Comment
	Action to recover

	Compute Hardware
	Processor/CPU failure, CPU condition not ok
	Critical
	Zabbix
	
	Switch to hot standby

	
	Memory failure / Memory condition not ok
	Critical
	Zabbix (IPMI)
	
	Switch to hot standby

	
	Network card failure, e.g. Network adapter connectivity lost
	Critical
	Zabbix / Ceilometer
	
	Switch to hot standby

	
	Disk crash
	Info
	RAID monitoring
	Network storage is very redundant (e.g. RAID system) and can guarantee high availability.
	Inform OAM

	
	Disk aging
	Info
	S.M.A.R.T (IPMI or OS)
	
	Inform OAM

	
	Storage controller
	Critical
	Zabbix (IMPI)
	
	Live migration if storage is still accessible; otherwise Hot Standby

	
	PDU/power failure, power off, server reset
	Critical
	Zabbix / Ceilometer
	
	Switch to hot standby

	
	Power degradation, Power redundancy lost, Power threshold exceeded
	Warning
	SNMP
	
	Live migration

	
	Chassis problem (e.g. fan degraded/failed, chassis power degraded), CPU fan problem, Temperature/thermal condition not okay
	Warning
	SNMP
	
	Live migration

	
	Mainboard failure
	Critical
	Zabbix (IPMI)
	
	Switch to hot standby

	
	OS crash (e.g. kernel panic)
	Critical
	Zabbix
	
	Switch to hot standby

	Hyper- visor
	System has restarted
	Critical
	Zabbix
	
	Switch to hot standby

	
	Hypervisor failure
	Warning / Critical
	Zabbix / Ceilometer
	
	Migration / switch to hot standby

	
	Zabbix / Ceilometer is unreachable
	Warning
	?
	
	Live migration

	Network
	SDN/OpenFlow Switch/Controller degraded/failed
	Critical
	?
	
	Switch to hot standby or reconfigure virtual network topology

	
	HW failure of physical switch/router
	Warning
	SNMP
	Redundancy of physical infrastructure is reduced or no longer available.
	Inform OAM to replace defect HW and configure new HW

[bookmark: _Toc413676203]Gap analysis in upstream projects [editor: Carlos] [authors: Gerald, Carlos, Tomi, Ryota]
[https://etherpad.opnfv.org/p/doctor_gap_analysis]
This section presents the findings of gaps on existing VIM platforms. The focus was to identify gaps Doctor depends on based on the requirements specified in Section XXX. The analysis work performed resulted in the identification of gaps of which are herein presented.
For a better and concise understanding, a standardized table format is used to identify the requirements, gaps and gap solutions when applicable. Table XXX describes the columns in the standardized table format.

[bookmark: _Toc413676204]VIM Northbound Interface
Immediate Notification
Category: VIM NB I/F
Type: 'deficiency in performance'
Description:
· To-be:
· VIM has to notify unavailability of virtual resource (fault) to VIM user immediately.
· Notification should be passed in '1 second' after fault detected/notified by VIM.
· Also, the following conditions/requirement have to be met:
· Only the user can receive notification of fault related to owned virtual resource(s).
· As-is:
· OpenStack Metering 'Ceilometer' can notify unavailability of virtual resource (fault) to the owner of virtual resource based on alarm configuration by the user.
· Ceilometer Alarm API: http://docs.openstack.org/developer/ceilometer/webapi/v2.html#alarms
· Alarm notifications are triggered by alarm evaluator instead notification agents that might receive faults.
· Ceilometer Architecture: http://docs.openstack.org/developer/ceilometer/architecture.html#id1
· Evaluation interval should be equal to or larger than configured pipeline interval for collection of underlying metrics.
· https://github.com/openstack/ceilometer/blob/stable/juno/ceilometer/alarm/service.py#L38-42
· The interval for collection has to be set large enough which depends on the size of the deployment and the number of metrics to be collected.
· The interval may not be less than one second in even small deployments. The default value is 60 seconds.
· Alternative: OpenStack has a message bus to publish system events. Operator can allow user to connect this, but there are no functions to filter out other events that should not be passed to the user or does not requested by the user.
· Gap
· Fault notifications cannot be received *immediately* by Ceilometer.
Related blueprints:
· ...

 Maintenance Notification
Category: VIM N/B I/F
Type: 'missing'
Description:
· To-be:
· VIM has to notify unavailability of virtual resource triggered by NFVI maintenance to VIM user.
· Also, the following conditions/requirements have to be met:
· VIM should accept maintenance message from administrator and mark target physical resource "in maintenance".
· Only the owner of virtual resource hosted by target physical resource can receive the notification that can trigger some process for applications which are running on the virtual resource (e.g. cut off VM).
· As-is:
· OpenStack: None
· AWS (just for study)
· AWS provides API and CLI to view status of resource (VM) and to create instance status and system status alarms to notify you when an instance has a failed status check.
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-instances-status-check_sched.html
· AWS provides API and CLI to view scheduled events, such as a reboot or retirement, for your instances. Also, those events will be notified via e-mail.
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-system-instance-status-check.html
· Gap
· VIM user cannot receive maintenance notifications.
Related blueprints
· ...

[bookmark: _Toc413676205]VIM Southbound interface
Normalization of data collection models
Type: 'missing'
Description:
· To-be:
· A normalized data format needs to be created to cope with the many data models from different monitoring solutions.
· As-is:
· Data can be collected from many places (e.g. Zabbix, Nagios, Cacti, Zenoss). Although each solution establishes its own data models, no common data abstraction models exist in OpenStack.
· Gap:
· Normalized data format does not exist.
Related blueprints:
· ...

[bookmark: _Toc413676206]OpenStack
[bookmark: _Toc413676207]Ceilometer
OpenStack offers a telemetry service, Ceilometer, for collecting measurements of the utilization of physical and virtual resources [3]. Ceilometer can collect a number of metrics across multiple OpenStack components and watch for variations and trigger alarms based upon on the collected data.

Scalability of fault aggregation
Category: Ceilometer
Type: 'scalability issue'
Description:
· To-be:
· Be able to scale to a large deployment, where thousands of monitoring events per second need to be analyzed
· As-is:
· Performance issue when scaling to medium-sized deployments
· Gap:
· Ceilometer seems not suitable for monitoring medium and large scale NFVI deployments
Related blueprints:
a. Usage of Zabbix for fault aggregation. Zabbix can support a much higher number of fault events (up to 15.000 events per second, but obviously also has some upper bound
http://blog.zabbix.com/scalable-zabbix-lessons-on-hitting-9400-nvps/2615/
b. Decentralized/hierarchical deployment with multiple instances, where one instance is only responsible for a small NFVI

Monitoring of hardware and software
Category: Ceilometer
Type: 'missing' (lack of functionality)
Description:
· To-be:
· Ceilometer was not designed to monitor hardware and software
· As-is:
· Need to be able to detect the following faults: https://wiki.opnfv.org/doctor/faults
· Gap:
· Ceilometer is not able to detect all faults listed in the link above
Related blueprints / workarounds:
· Use other dedicated monitoring tools like Zabbix or Monasca
·

[bookmark: _Toc413676208]Nova
OpenStack Nova [4] is a mature and widely known and used component in OpenStack cloud deployments. It is the main part of an infrastructure as a service system providing a cloud computing fabric controller, supporting a wide diversity of virtualization and container technologies.
Nova has proven throughout these past years to be highly available and fault-tolerant. Featuring its own API, it also provides a compatibility API with Amazon EC2 APIs.
Fencing instances of an unreachable host.
Category: Nova
Type: 'missing'
Description:
· To-be:
· Safe VM evacuation has to be preceded by fencing (isolate, shut down) the failed host. Failing to do so – when the perceived disconnection is due to some transient or partial failure – the evacuation might lead into two identical instances running together and having a dangerous conflict.
· Fencing Instances of an unreachable host:
https://wiki.openstack.org/wiki/Fencing_Instances_of_an_Unreachable_Host
· As-is:
· When a VM goes down due to a host HW, host OS or hypervisor failure, nothing happens in OpenStack. The VMs of a crashed host/hypervisor are reported to be live and OK through the OpenStack API.
· Gap:
· Openstack does not fence instances of an unreachable host.
Related blueprints:
· https://blueprints.launchpad.net/nova/+spec/fencing

Evacuate VMs on Maintenance mode
Category: Nova
Type: 'missing'
Description:
· To-be:
· When maintenance mode for a compute host is set, trigger VM evacuation to available compute nodes before bringing the host down for maintenance
· As-is:
· If setting a compute node to a maintenance mode, OpenStack only schedules evacuation of all VMs to available compute nodes if in-maintenance compute node runs the XenAPI and VMware ESX hypervisors. Other hypervisors (e.g. KVM) are not supported and, hence, guest VMs will likely stop running due to maintenance actions administrator may perform (e.g. hardware upgrades, OS updates).
· Gap:
· Nova libvirt hypervisor driver does not implement automatic guest VMs evacuation when compute nodes are set to maintenance mode ($ nova host-update --maintenance enable <hostname>)
Related blueprints:
· ...

[bookmark: _Toc413676209]Monasca
Monasca is an open-source monitoring-as-a-service (MONaaS) solution that integrates with OpenStack. Even though it is still in its early days, it is the interest of the community that the platform be multi-tenant, highly scalable, performant and fault-tolerant. Companion with a streaming alarm engine and a notification engine, is a northbound REST API users can use to interact with Monasca. Hundreds of thousands of metrics per second can be processed [5].
Anomaly detection
Category: Monasca
Type: 'missing' (lack of functionality)
Description:
· To-be:
· Detect the failure and perform a root cause analysis to filter out other alarms that may be triggered due to their cascading relation.
· As-is:
· A mechanism to detect root causes of failures is not available.
· Gap:
· Certain failures can trigger many alarms due to their dependency on the underlying root cause of failure. Knowing the root cause can help filter out unnecessary and overwhelming alarms.
Related blueprints / Workaround:
· Monasca as of now lacks this feature, although the community is aware and working toward supporting it

ItemName: Sensor monitoring
Category: Monasca
Type: 'missing' (lack of functionality)
Description:
· To-be:
· It should support monitoring sensor data retrieving, for instance, from IPMI.
· As-is:
· Monasca does not monitor sensor data.
· Gap:
· Sensor monitoring is of the most importance. It provides operators status on the state of the physical infrastructure (e.g. temperature, fans)
Related blueprints / Workaround:
· Monasca can be configured to use third-party monitoring solutions (e.g. Nagios, Cacti) for retrieving additional data.

[bookmark: _Toc413676210]
[bookmark: _Toc413674852]Ironic (?)	Comment by docomo: Remove if not used
[bookmark: _Toc413676212]
[bookmark: _Toc413676213]
[bookmark: _Toc413676214]Hardware monitoring tools
[bookmark: _Toc413676215]Zabbix
Delay in execution of actions
Category: Zabbix
Type: 'deficiency in performance'
Description:
· To-be:
· After detecting a fault, the monitoring tool should immediately execute the appropriate action, e.g. inform the manager through the NB I/F
· As-is:
· A delay of around 10 seconds was measured in two independent testbed deployments
· Gap:
· Cause of the delay needs to be identified and fixed
Related blueprints:
· N/A

[bookmark: _Toc413674855]Others
[bookmark: _Toc413674856]VIM Southbound interface
Normalization of data collection models
Category: VIM Southbound interface
Type: 'missing'
Description:
· To-be:
· A normalized data format needs to be created to cope with the many data models from different monitoring solutions.
· As-is:
· Data can be collected from many places (e.g. Zabbix, Nagios, Cacti, Zenoss). Although each solution establishes its own data models, no common data abstraction models exist in OpenStack.
· Gap:
· Normalized data format does not exist.
Related blueprints:
· ...

[bookmark: _Toc413676216]Detailed implementation plan [editor: Ryota] [authors: Gerald, Carlos, Tomi, Ryota]	Comment by Gerald Kunzmann: Please edit: https://etherpad.opnfv.org/p/doctor_implementation_plan

Functional Blocks
[image:]	Comment by Gerald Kunzmann: https://wiki.opnfv.org/?ns=doctor%3A&image=doctor%3Adoctor.201502.rev.0.1.pptx&do=media&tab_files=files&tab_details=view
[bookmark: _Ref413302921]Figure 5 - Functional blocks

[bookmark: _Toc413676218]Monitor
The Monitor module has the responsibility for monitoring the Virtualized virtualized Infrastructureinfrastructure.
There are already many existing tools and services (e.g. Zabbix) to monitor different aspects of H/Whardware and S/Wsoftware resources such as Zabbix.

[bookmark: _Toc413676219]Inspector
The Inspector module has the ability to receive various failure notifications regarding physical resource(s) from monitorMonitor module(s), to find affected referring resource map from physical to virtual, and update the state of the virtual resource (and physical resource).	Comment by docomo: not clear
The Inspector has drivers for different types of events and resources to integrate any types of monitor and controller modules.
Inspector It also load uses a failure policy which instructs the Inspector on the failure selection and aggregation from raw events.
This failure policy is configured by administrator.
The reason for separation of the Inspector and Controller modules is to make the Controller focus on simple operations by avoiding a tight integration of various health check mechanisms into the Controller.

[bookmark: _Toc413676220]Controller
The Controller has is responsibility responsible for maintaining the resource map, ability to accepting update requests for the resource state(s) (exposing as provider API), and notifiesnotifying all events regarding virtual resources to the Notifier.
Optionally, the Controller has the ability to poison the state of virtual resources mapping to physical resources when for which it has received failure notifications of mapped physical resource by from the Inspector.
The Controller also re-calculates the capability of a Resource Pool when receiving a failure notification for a of physical resource received and it notifies the updated capacity as an event to the Notifier.
In a real-world deployment, the VIM may have several controllers for each resource types such as Nova, Neutron and Cinder in OpenStack.
Each controller has maintains a database of virtual and physical resources which shall be master information in VIM.	Comment by docomo: not clear

[bookmark: _Toc413676221]Notifier
The focus of the Notifier is on selecting and aggregating failure events received from the controller based on policies mandated by the consumer. Therefore, it allows the Consumer (and Administrator) to subscribe for Notifier has ability to register alarms regarding virtual resources with subscribe(using a method such as API endpoint) of User-side and Admin-side Manager, and it will then to notify events to the Consumer by referingreferring to the alarm configuration when it hasafter having received events from a Controllers.	Comment by docomo: really?
The northbound interface between the Notifier and the Consumer / Administrator is specified in Section 5.4.
Notifier focus on selecting and aggregating failure events based on user configuration.

[bookmark: _Toc413676222]Sequence
[bookmark: _Toc413676223]Fault Management
[image:]
Figure 6 - Fault management scenario

[image:]
Figure 6 - Fault management work flow
Detailed work flow:
Step 1:	Request to subscribe to monitor specific virtual resources. A query filter can be used to narrow down the alarms the Consumer wants to be informed about.
Step 2:	Each subscription request is acknowledged with a subscribe response message. The response message contains information about the subscribed virtual resources, in particular if a subscribed virtual resource is in “alarm” state.
Step 3:	The NFVI sends monitoring events for resources the VIM has been subscribed to. Note: this subscription message exchange between the VIM and NFVI is not shown in this message flow.
Step 4:	Event correlation, fault detection and aggregation in VIM.
Step 5:	Database lookup to find the virtual resources affected by the detected fault.
Step 6:	Fault notification to Consumer.
Step 7:	The Consumer switches to standby configuration (SBY)
Step 8:	Instructions to VIM requesting certain actions to be performed on the affected resources, for example migrate/update/terminate specific resource(s). After reception of such instructions, the VIM is executing the requested action, e.g. it will migrate or terminate a virtual resource.
Step 9:	Query request from Consumer to VIM to get information about the current status of a resource.
Step 10:	Response to the query request with information about the current status of the queried resource. In case the resource is in “fault” state, information about the related fault(s) is returned.

[image:]
[bookmark: _Ref413416152]Figure 7 - Fault management scenario

Figure 7 shows a more detailed message flow (Steps 4 to 6) between the 4 building blocks introduced in Section 5.1.
Step 4:	The Monitor of the NFVI observed a fault and reports it to the Inspector.	Comment by docomo: TBD
Step 5b:	The Inspector aggregates… using the failure policy (?).
Step 5a:	The Inspector updates the state of the affected virtual/physical (?) resources in the Resource Map.
Step 5b:	The Inspector queries the Resource Map to find the virtual resources affected by the raw fault.
Step 5c:	The Controller observes a change of the resource state (???) and informs the Notifier.
Step 7:	A fault notification is sent to northbound to the Consumer.

[bookmark: _Toc413676224]NFVI Maintenance

[image:]	Comment by docomo: Update Steps 11+12
[bookmark: _Ref413661585]Figure 8 – NFVI maintenance work flow

The detailed work flow for NFVI maintenance is shown in Figure 8 and has the following steps:
Step 1:	Subscribe to fault/maintenance notifications.
Step 2:	Response to subscribe request.
Step 3:	Maintenance trigger received from administrator.
Step 4:	VIM switches NFVI resources to “maintenance” state. This, e.g., means they should not be used for further allocation/migration requests
Step 5:	Database lookup to find the virtual resources affected by the detected maintenance operation.
Step 6:	Maintenance notification to Consumer.
Step 7:	The Consumer switches to standby configuration (SBY)
Step 8:	Instructions from Consumer to VIM requesting certain recovery actions to be performed (step 7a). After reception of such instructions, the VIM is executing the requested action in order to empty the physical resources (step 7b).
Step 9:	Maintenance response from VIM to inform the Administrator that the physical machines have been emptied (or the operation resulted in an error state).
Step 10:	Administrator is coordinating and executing the maintenance operation/work on the NFVI.
Step 11:	Query request from Consumer to VIM to get information about the current state of a resource.
Step 12:	Response to the query request with information about the current state of the queried resource(s). In case the resource is in “maintenance” state, information about the related maintenance operation is returned.

Figure 9 shows the implementation plan for the NFVI maintenance use case. Note that steps 1, 2, and 5 to 8a in the NFVI maintenance work flow are similar to the steps in the fault management work flow and share the same implementation plan in Release 1.
[image:]
[bookmark: _Ref413420680]Figure 9 - NFVI Maintenance implementation plan

TODO: Only explain here the interface Admin to VIM. Which module is receiving the MaintenanceRequest from the Administrator? (Steps 3 and 9).

Information elementsFault management	Comment by docomo: Text goes to 5.5
Fault Query Request/Response
Filter: narrows down the FaultQueryRequest, for example it limits the query to certain physical resources, a certain zone, a given fault type/severity/cause, or a specific FaultID.
ResourceFaultType: see above

NFVI Maintenance
Maintenance Request/Response
ResourceID (Identifier): identifies the physical resource(s) on which the maintenance action is planned.
State = “maintenance” (String): requests the VIM to change the state of the resource to maintenance. State may also be set to “normal” after the maintenance action has been performed (or was canceled).
Result (Key-Value-Pair): informs the Administrator about the new state of the resource. It can also provide additional meta-data, e.g. on whether the request had been processed successfully or had resulted in an error.
State Change Notification
ResourceState (ResourceStateType): (see Section XXX)
State Query Request/Response
Filter (StateQueryFilterType): narrows down the query (see Section XXX)
StateQueryResponse
ResourceState (ResourceStateType): (see Section XXX)

[bookmark: _Toc413676225]Implementation plan for Release 1
[bookmark: _Toc413676226]Fault management
[image:]
Figure 109 - Implementation plan in OpenStack (Release 1)

Description for Fig. 10 TBD

Shall we describe the 3 different potential approaches and explain why we have selected this approach? (see slides Ryota from 5.3.2015)
[image:]
[bookmark: _Ref413665358]Figure 11 – Implementation plan in Ceilometer architecture[footnoteRef:1] [1: http://docs.openstack.org/developer/ceilometer/architecture.html]

Figure 11 … Approach is to a) Hook in notification agent (“publisher” in Ceilometer terminology) and b) Able to capture data update only for immediate notification

[bookmark: _Toc413676227]NFVI Maintenance
Figure + Description TBD

For NFVI Maintenance, a quite similar implementation plan exists. Instead of a raw fault being observed by the Monitor … TBD

[bookmark: _Toc413676228]Information elements
Simple information elements:
· ResourceID (Identifier): identifies the physical or virtual resource that is, e.g., affected by a fault or a maintenance action of the underlying physical resource.
· State (String): state of a resource. The state can be “normal”, “maintenance”, “down”, “error”:
· FaultID (Identifier): identifies the related fault in the underlying physical resource. This can be used to correlate different fault notifications caused by the same fault in the physical resource.
· FaultDetails (TBD): provides more detailed information about the fault.
· Metadata (Key-Value-Pairs): can contain additional information like details about resources in maintenance/error state.
Complex information elements:
· ResourceInfoType:
· ResourceID
· ResourceState
· Metadata
· ResourceFaultType:
· ResourceID
· Faults (FaultType): For each resource, all faults including detailed information about the faults are provided.
· FaultID
· FaultDetails
· SubscribeFilterType
· TBD
· FaultQueryFilterType:
· TBD: narrows down the FaultQueryRequest, for example it limits the query to certain physical resources, a certain zone, a given fault type/severity/cause, or a specific FaultID.
· StateQueryFilterType:
· TBD: narrows down the StateQueryRequest, for example it limits the query to certain physical resources, a certain zone, or a given state (e.g. only resources in “maintenance” state)
· ResourceState (ResourceStateType):
· ResourceID (Identifier): identifies a physical or virtual resource(s)
· State (String): returns the current state of the reported resource.

[bookmark: _Toc413676229]Detailed northbound interface specification
INTERNAL NOTE: Interface specification: methods, inputs, outputs, … (should not be too related to OpenStack).
Describe entities , e.g. in JSON
[bookmark: _Toc413676230]Fault management interface
This interface allows the VIM to notify the Consumer about a virtual resource that is affected by a fault, either within the virtual resource itself or by the underlying virtualization infrastructure. The messages on this interface are shown in Figure 12 and explained in detail in the following subsections.
[image:]
[bookmark: _Ref413666660]Figure 12 - Fault management NB I/F messages

SubscribeRequest (Consumer VIM)
Subscription from Consumer to VIM to be notified about faults of specific resources. The faults to be notified about can be narrowed down using a subscribe filter.
Parameters:
· Filter (SubscribeFilterType): Information to narrow down the faults that shall be notified to the Consumer, for example limit to specific ResourceID(s), severity, or cause of the alarm.

SubscribeUpdateRequest (Consumer VIM)
Request to update or unsubscribe from an existing subscription.
Parameters:
SubscribeID (Identifier): Identifies an existing subscription that is to be updated.
Filter (SubscribeFilterType): see above
SubscribeResponse (VIM Consumer)
Response to a subscribe request message including information about the subscribed resources, in particular if they are in “fault/error” state.
Parameters:
· SubscribeID (Identifier): Unique identifier for the subscription. It can be used to delete or update the subscription.
· ResourceInfo (ResourceInfoType): Provides additional information about the subscribed resources, i.e., a list of the related resources, the current state of the resources, etc.

FaultNotification (VIM Consumer)
Notification about a virtual resource that is affected by a fault, either within the virtual resource itself or by the underlying virtualization infrastructure. After reception of this request, the Consumer will decide about the optimal action to resolve the fault. This includes actions like switching to a hot standby virtual resource, migration of the fault virtual resource to another physical machine, termination of the faulty virtual resource and instantiation of a new virtual resource in order to provide a new hot standby resource. Existing resource management interfaces and messages between the Consumer and the VIM can be used for those actions, and there is no need to define additional actions on the Fault Management Interface.
Parameters:
· ResourceInfo (ResourceInfoType): List of faulty resources with detailed information about the faults (see Section XYZ).

FaultNotificationAck (Consumer VIM)	Comment by docomo: Can have parameter “action”	Comment by docomo: Not considered in current work flow
Acknowledgement of a fault notification. This message may for example be used to “clear” an alarm, as the Consumer had already initiated some fault recovery action related to this alarm based on a different fault notification received earlier.
Parameters:
FaultQueryRequest (Consumer VIM)
Request to find out about active alarms at the VIM. A FaultQueryFilter can be used to narrow down the alarms returned in the response message.
Parameters:
· FaultQueryFilter (FaultQueryFilterType): narrows down the FaultQueryRequest, for example it limits the query to certain physical resources, a certain zone, a given fault type/severity/cause, or a specific FaultID.

FaultQueryResponse (VIM Consumer)
List of active alarms at the VIM matching the FaultQueryFilter specified in the FaultQueryRequest.
Parameters:
· ResourceInfo (ResourceInfoType): List of faulty resources. For each resource all faults including detailed information about the faults are provided (see Section XYZ).

	Message	Comment by docomo: Remove table as it looks too much like a ETSI NFV document.
DONE
	[bookmark: _Toc413676232]Direction
	[bookmark: _Toc413676233]Description

	[bookmark: _Toc413676235]SubscribeRequest
	[bookmark: _Toc413676236]Consumer VIM
	[bookmark: _Toc413676237]Subscription to be notified about faults of specific resources. The faults to be notified about can be narrowed down using a subscribe filter.

	[bookmark: _Toc413676239]SubscribeUpdateRequest
	[bookmark: _Toc413676240]Consumer VIM
	[bookmark: _Toc413676241]Request to update or unsubscribe from an existing subscription.

	[bookmark: _Toc413676243]SubscribeResponse
	[bookmark: _Toc413676244]VIM Consumer
	[bookmark: _Toc413676245]Response to a subscribe (update) request message including information about the subscribed resources, in particular if they are in “fault/error” state.

	[bookmark: _Toc413676247]FaultNotification
	[bookmark: _Toc413676248]VIM Consumer
	Notification about a virtual resource that is affected by a fault, either within the virtual resource itself or by the underlying virtualization infrastructure.
[bookmark: _Toc413676250]After reception of this request, the Consumer will decide about the optimal action to resolve the fault. This includes actions like switching to a hot standby virtual resource, migration of the fault virtual resource to another physical machine, termination of the faulty virtual resource and instantiation of a new virtual resource in order to provide a new hot standby resource.

	[bookmark: _Toc413676252]FaultNotificationAck
	[bookmark: _Toc413676253]Consumer VIM
	[bookmark: _Toc413676254]Acknowledgement of fault notification. This message may for example be used to “clear” an alarm, as the Consumer had already initiated some fault recovery action related to this alarm based on a different fault notification received earlier.

	[bookmark: _Toc413676256]FaultQueryRequest
	[bookmark: _Toc413676257]Consumer VIM
	[bookmark: _Toc413676258]Request to find out about active alarms at the VIM. A FaultQueryFilter can be used to narrow down the alarms returned in the response message.

	[bookmark: _Toc413676260]FaultQueryResponse
	[bookmark: _Toc413676261]VIM Consumer
	[bookmark: _Toc413676262]List of active alarms at the VIM matching the FaultQueryFilter specified in the FaultQueryRequest.

[bookmark: _Toc413674872]Fault management interface
Subscribe Operation
Subscription to virtual resources may already implicitly happen during the allocation of the virtual resource. In that case, an explicit subscript operation is not needed.
	Message
	Direction

	SubscribeRequest
	Consumer VIM

	SubscribeUpdateRequest
	Consumer VIM

	SubscribeResponse
	VIM Consumer

[bookmark: _Toc413676279]
Note: there may also be the need for a QuerySubscriptionsRequest/-Response messages, such that the Consumer can find out about any active subscriptions at the VIM.
[bookmark: _Toc413676281]
Subscribe Request
[bookmark: _Toc413676283]
Subscribe Update Request
This message is used to update or unsubscribe an existing subscription.
[bookmark: _Toc413676286]
Subscribe Response
[bookmark: _Toc413676288]
Notify fault operation
This interface allows the VIM to notify the Consumer about a virtual resource that is affected by a fault, either within the virtual resource itself or by the underlying virtualization infrastructure.
[bookmark: _Toc413676291]After reception of this request, the Consumer will decide about the optimal action to resolve the fault. This includes actions like switching to a hot standby virtual resource, migration of the faulty virtual resource to another physical machine, termination of the faulty virtual resource and instantiation of a new virtual resource in order to provide a new hot standby resource. Existing resource management interfaces and messages between the Consumer and the VIM can be used for those actions, and there is no need to define additional actions on the Fault Management Interface.
	Message
	Direction

	FaultNotification
	VIM Consumer

	FaultNotificationAck
	Consumer VIM

	FaultQueryRequest
	Consumer VIM

	FaultQueryResponse
	VIM Consumer

[bookmark: _Toc413676307]
[bookmark: _Toc413676308]
FaultNotification
[bookmark: _Toc413676310]
FaultNotificationAck
[bookmark: _Toc413676312]
FaultQueryRequest
[bookmark: _Toc413676314]
FaultQueryResponse
[bookmark: _Toc413676316]
[bookmark: _Toc413676317]
[bookmark: _Toc413676318]NFVI maintenance
The NFVI maintenance interface allows …TBD
The messages defined in the this northbound interface are shown in Figure XXX and described in detail in the following subsections.:

[image:]
Figure 13 – NFVI maintenance NB I/F messages

SubscribeRequest (Consumer VIM)
Subscription from Consumer to VIM to be notified about maintenance operations for specific resources. The resources to be informed about can be narrowed down using a subscribe filter.
Parameters:
· Filter (SubscribeFilterType): Information to narrow down the faults that shall be notified to the Consumer, for example limit to specific ResourceID(s).
SubscribeResponse (VIM Consumer)
Response to a subscribe request message, including information about the subscribed resources, in particular if they are in “maintenance” state.
Parameters:
· SubscribeID (Identifier): Unique identifier for the subscription. It can be used to delete or update the subscription.
· ResourceInfo (ResourceInfoType): Provides additional information about the subscribed resources, i.e., a list of the related resources, the current state of the resources, etc.

StateChangeNotification (VIM Consumer)
Notification about a resource that was switched to “maintenance” state. After reception of this request, the Consumer will decide about the optimal action to address this request, e.g. to switch to the standby configuration.
Parameters:
· ResourceInfo (ResourceInfoType): List of resources where the state has been changed to maintenance (see Section XYZ).

MaintenanceRequest (Administrator VIM)
Request to change the state of a list of resources, e.g., to “maintenance” state in order to prepare them for a planned maintenance operation.
Parameters:
· ResourceID
· State = “maintenance”:

MaintenanceResponse (VIM Administrator)
Response message to inform the Administrator that the requested resources are now in maintenance state (or the operation resulted in an error) and the maintenance operation(s) can be executed.
Parameters:
· ResourceID
· Result (key-value pairs)

StateQueryRequest (Administrator VIM)	Comment by docomo: remove?
Request to find out about resources in maintenance state. A filter can be used to narrow down the resources returned in the response message.
Parameters:
· StateQueryFilter (StateQueryFilterType): narrows down the StateQueryRequest, for example it limits the query to certain physical resources, a certain zone, or a given resource state.

StateQueryResponse (VIM Administrator)
List of resources in maintenance state matching the filter specified in the StateQueryRequest.
Parameters:
· ResourceInfo (ResourceInfoType): List of resources. For each resource the current state is provided (see Section XYZ).

	Message	Comment by docomo: Remove table
DONE
	Direction
	Description

	SubscribeRequest
	Consumer VIM
	Subscription to be notified about maintenance operations for specific resources.

	SubscribeUpdateRequest
	Consumer VIM
	Request to update or unsubscribe from an existing subscription.

	SubscribeResponse
	VIM Consumer
	Response to a subscribe (update) request message, including information about the subscribed resources, in particular if they are in “maintenance” state.

	MaintenanceNotification
	VIM Consumer
	Notification about a resource that was switched to “maintenance” state. After reception of this request, the Consumer will decide about the optimal action to address this request, e.g. to switch to the standby configuration.

	MaintenanceRequest
	Administrator VIM
	Request to change the state of a list of resources, e.g. to “maintenance” state in order to prepare them for a planned maintenance operation.

	MaintenanceResponse
	VIM Administrator
	Response message to inform the Administrator that the requested resources are now in maintenance state (or the operation resulted in an error) and the maintenance operation(s) can be executed.

	StateQueryRequest
	Administrator VIM
	Request to find out about resources in maintenance state. A filter can be used to narrow down the resources returned in the response message.

	StateQueryResponse
	VIM Administrator
	List of resources in maintenance state matching the filter specified in the StateQueryRequest.

[bookmark: _Toc412461617][bookmark: _Toc413676319]Blueprints
Internal NOTE: For each BP, write a high level description, then paste the BP text as submitted to the community.

[bookmark: _Toc413676320]Instance State Notification (Ceilometer)
This BP is adding … TBD

The blueprint submitted to OpenStack reads as follow:
This BP proposes to add a new compute notification state entry to handle events from an instance (server) from nova. It also creates a new meter "instance.state".
The BP focuses on creating the metric "instance.state" by using a notification agent rather than a polling based approach, as it would be used with an “Event Publisher for Alarm” (see Section XYZ).

[bookmark: _Toc413676321]Event Publisher for Alarm (Ceilometer)BP2
This BP is adding … TBD

The blueprint submitted to OpenStack reads as follow:
The proposal is to create a new event publisher which can send messages to a new alarm evaluator [BP#3]. The publisher enables Ceilometer to provide event driven notifications to the user. Besides the existing Ceilometer usage for billing purposes, this BP enhances Ceilometer to provide additional notification capabilities to the user.
TBD

[bookmark: _Toc413676322]Notification-driven alarm evaluator (Ceilometer)BP3
This BP is adding … TBD

The blueprint submitted to OpenStack reads as follow:
This BP proposes a notification-driven alarm evaluator that is using event notifications received from a "event publisher for alarm" [BP#2]. The alarm evaluator does not execute any periodical task, but is triggered by alarm notifications. The alarm evaluator will aggregate and correlate different alarms, which will then be notified to the user in order to trigger recovery action(s) on the user-side (e.g. migrate, terminate, re-instantiate etc.).
TBD

[bookmark: _Toc413676323]Report host fault to update server state immediatelyBP4 (Nova)
This BP is adding … TBD

The blueprint submitted to OpenStack reads as follow[footnoteRef:2]: [2: https://blueprints.launchpad.net/nova/+spec/update-server-state-immediately]

When a server goes down because of a host hardware, OS, or hypervisor error, the server state remains as operational in OpenStack API. A new API is needed to report that a host fault and to change the state of the server(s) immediately. The new API provides the possibility to externally detect any kind of host failure and to inform OpenStack about it.
TBD

[bookmark: _Toc413676324]Other related BPs	Comment by docomo: TODO
HA BP
TBD

pacemaker-servicegroup-driver
New API to report host fault might be very nice. Any external tool (like Doctor), could detect host error fast and use the API to mark host faulty (and fence the host by shutting down if needed). Anyhow this new API might not get so easily trough to openstack. For this there is already work to get pacemaker servicegroup driver to have host state change fast:	Comment by docomo: Update
https://blueprints.launchpad.net/nova/+spec/pacemaker-servicegroup-driver.
For server state might have BP to see the host state when querying the server. Now if host state is changed faster, this might fulfill VNFM needs (with current way openstack works), before there is new NB IF in place (to report host faults) as that implementation might take longer as more complicated issue.

LibvirtWatchdog#Notifications
 Related info about watchdog devices, quoting from BP [x]: "This is useful to cloud users to deal with problems in their guest OS, to kill off a mis-behaving instance to allow an external HA solution to move processing to another instance."
 This BP is in status completed but the notification part that never got implemented. The intention I guess was that the nova-compute libvirt driver should also subscribe to WATCHDOG events from libvirt. nova-compute libvirt driver today is subscribed to LIFECYCLE events. I mention this because watchdog notifications are a topic in the ETSI REL spec.
 So I guess some nova BP is also needed to add more libvirt notifications into nova compute libvirt driver?
 https://wiki.openstack.org/wiki/LibvirtWatchdog#Notifications
 Providing VNF faults through VIM could be helpful.
 I think you can propose nova to make nova-compute subscribe to WATCHDOG events from libvirt and emit those events to Ceilometer.
 It might be nice that user can express whether monitoring required by selecting flag in flavor or image property to reduce unnecessary notification in operator perspective.

[bookmark: _Toc413676325]Summary and conclusion [editor: Ashiq] [authors: Gerald, …]
[bookmark: _Toc413676326]Future plan

[bookmark: _Toc413676327]References and bibliography

[bookmark: _Ref412103661][1]	OPNFV, “Doctor Project,” [Online]. Available at https://wiki.opnfv.org/doctor
OpenStack, [Online]. Available at https://www.openstack.org/
[bookmark: _Ref412103600]OpenStack Telemetry (Ceilometer), [Online]. Available at https://wiki.openstack.org/wiki/Ceilometer
[bookmark: _Ref412103614]OpenStack Nova, [Online]. Available at https://wiki.openstack.org/wiki/Nova
[bookmark: _Ref412103625]OpenStack Monasca, [Online], Available at https://wiki.openstack.org/wiki/Monasca
OpenStack Cloud Administrator Guide, [Online]. Available at http://docs.openstack.org/admin-guide-cloud/content/
ETSI NFV GS…

	34/35
image1.png
User/Client User/Client User/Client
Blue Green Red

3. Fault Notification (VM ID, Fault ID)

OpenStack Northbound I/E.

2. Should the User/

Server-VM info: - .
Server-1- VN1, VM-2 Client be informed?
Server-2: VM-7 If YES, find User owing
W || vz N7 VN4 5. Execute Instruction [Sener3 ke - the VM from Database
N Ownership info:
‘ - migrate VM etc. VM-1, VM-7: Blue
3 347 VM-2: Green
3 | VM4 Red
[Hardware Hardware Hardware —
Server-1 Server-2 Server-3 i Fault Notification OpensStack
1 Resource_Pool i - Hardware fault
- Hypervisor fault
- Host OS fault

Fig. 1: Steps in Fault Management

image2.png
User/Chent
Adminisirtor
g

3. Maintenance
Notificatior
(VM D)

1. Maintenance instruction (Server-3)
4.Instruction (VM ID)

OpenStack Nornbound IF_<3

2. Which VMs are
ffected?
wer | fwez | wer o 5. Execute Instruction | Sened vild— a
- migrate VM etc. Qunerstip nfo: Find User who owns
o] o] [] 2 croen the VM_from Database;
¢ ViR

[Farawars aravare Hardware ||
| (sener Senvor) ey || OpenStack

__ResourcePool |

Fig. 2: Resource pool maintenance

image3.emf
Virtualized Infrastructure

Applications

Consumer and Administrator

Virtualized Infrastructure

Manager (VIM),

e.g. OpenStack

Virtual

Compute

Virtual

Storage

Virtual

Network

Virtualization Layer

Hardware Resources

App App App

image4.emf
Virtualized Infrastructure

Applications

User and Administrator

Virtualized Infrastructure

Manager (VIM)

= OpenStack

Virtual

Compute

Virtual

Storage

Virtual

Network

Virtualization Layer

Hardware Resources

App App App

image5.emf
NFVI VIM Consumer

Northbound I/F

Fault

Notification

6. Recovery action(s)

(e.g. Migrate/Update/Terminate VirtualContainer)

(out of scope of Doctor project)

5. Switch to

SBY

3. Find affected

virtual resources

2. Fault detection

Fault aggregation

1. Monitoring_event

(ResourceID)

| 4. FaultNotification(VirtualResourceId; FaultId; FaultDetails) |

image6.png
Resource Pool OpenStack User/Client

1. Fault notification (PM ID)

! e.g. an abstracted number.

2. Fault/event correlatior User can decide what to
do on this number

3. Fault notification (VM ID, Fauit ID) N
i

(4. Instruction on VM (VM ID, Operation
H N N
5. Execute Instruction ID) —————"" Whatkind of Operation should

]
- - : be performed on the VMs in
e.g. migrate/kill VM ! question e.g. migrate/destroy
]

image7.emf

image8.emf
NFVI

Northbound I/F

Maintenance

Notification

Administrator Consumer

6. Switch to

SBY

VIM

1. MaintenanceRequest

(ResourceID; State="Maintenance")

5. StateChangeNotification

(VirtualResourceID)

9. Maintenance work/operations

(out of scope of Doctor project)

4. Find affected

virtual resources

2. Switch resources to

„maintenance“ state

8. MaintenanceResponse

(ResourceID; Result)

Similar flow as in FaultManagement

7b. Empty physical resources

7a. Recovery action(s)

(e.g. Migrate/Update/Terminate VirtualContainer)

(out of scope of Doctor project)

image9.emf
Notifier

User-side

Manager

Virtualized Infrastructure

Monitor

Applications

Controller

Inspector

Admin-side

Manager

OpenStack Client

OpenStack (VIM)

Virtual

Compute

Virtual

Storage

Virtual

Network

Virtualization Layer

Hardware Resources

App App App

image10.emf
Monitor

Notifier

User-side

Manager

Virtualized Infrastructure

Monitor

Alarm

Conf.

3. Update State

2. Find Affected

Applications

Controller

Controller

Controller

Resource

Map

1. Raw Failure

Inspector

4. Notify all

4. (alt) Notify

Failure Policy

Admin-side

Manager

6-. Action

Monitor

0. Set Alarm

5. Notify

E

rror

image11.emf
NFVI VIM Consumer

Northbound I/F

Subscribe

Operation

Fault

Notification

Fault

Query

8. Recovery action(s)

(e.g. Migrate/Update/Terminate VirtualContainer)

(out of scope of Doctor project)

7. Switch to

SBY

10. FaultQueryResponse

(ResourceInfo)

5. Find affected

virtual resources

4. Fault detection

Fault aggregation

1. SubscribeRequest

(Filter)

2. SubscribeResponse

(ResourceInfo)

3. Monitoring

event(s)

6. FaultNotification

(ResourceInfo)

9. FaultQueryRequest

(ResourceQueryFilter)

image12.emf
Monitor

Notifier

Consumer

NFVI

Alarm

Conf.

5a. Update State

5b. Find Affected

Applications

Controller

Controller

Controller

Resource

Map

Inspector

5c. Notify all

5c. (alt) Notify

Administrator

6. Notification

1+2. Subscribe+

Response

8. Action

Failure

Policy

Monitor

Monitor

4. Raw failure

7. Switch to SBY

image13.emf
NFVI

Northbound I/F

Maintenance

Notification

State

Query

11. StateQueryRequest

(...)

12. StateQueryResponse

(...)

Administrator Consumer

7. Switch to

SBY

VIM

3. MaintenanceRequest

(ResourceID; State="Maintenance")

6. MaintenanceNotification

(ResourceInfo)

10. Maintenance work/operations

(out of scope of Doctor project)

5. Find affected

virtual resources

4. Switch resources to

„maintenance“ state

9. MaintenanceResponse

(ResourceID; Result)

Similar flow as in FaultManagement

8b. Empty physical resources

8a. Recovery action(s)

(e.g. Migrate/Update/Terminate VirtualContainer)

(out of scope of Doctor project)

Subscribe

Operation

1. SubscribeRequest

(Filter)

2. SubscribeResponse

(ResourceInfo)

image14.emf
Monitor

Notifier

Consumer

NFVI

Alarm

Conf.

4. Update State

5a. Find Affected

Applications

Controller

Controller

Controller

Resource

Map

Inspector

5b. Notify all

5b. (alt) Notify

Administrator

6. Notification

8. Action

Failure

Policy

Monitor

Monitor

3. Maintenance

Request

9. Maintenance

Response

1+2. Subscribe+

Response

7. Switch to SBY

image15.emf
Ceilometer

Virtualized Infrastructure

Applications

Nova

Inspector

Zabbix

Consumer and Administrator

Error Injection

Plugin ?

Alarm Set

Immediate Notification

Queue

Northbound I/F

image16.emf
event

notification

dispatcher

resource

sample

Publisher

Notification-

driven

evaluator

image17.emf
Subscribe Operation

SubscribeRequest message

+SubscribeFilter : SubscribeFilterType

1 0..1

SubscribeFilterType

-memberName

SubscribeResponse message

+SubscribeID : Identifier

ResourceInfoType

+ResourceID : Identifier

1

0..*

FaultType

+FaultID : Identifier

1 0..*

Fault Notfication

FaultNotification message

+ResourceInfo : ResourceInfoType

+ResourceInfo : ResourceInfoType

+Faults : FaultType

+FaultDetails : Key-Value pairs

1 1..*

+ResourceState : String

FaultQuery Operation

FaultQueryRequest message

+FaultQueryFilter : FaultQueryFilterType

FaultQueryResponse message

+ResourceInfo : ResourceInfoType

1

0..*

FaultQueryFilterType

-memberName

1

0..*

image18.emf
Subscribe Operation

SubscribeRequest message

+SubscribeFilter : SubscribeFilterType

1 0..1

SubscribeFilterType

TBD

SubscribeResponse message

+SubscribeID : Identifier

ResourceInfoType

+ResourceID : Identifier

1

0..*

FaultType

+FaultID : Identifier

1 0..*

StateChange Notfication

StateChangeNotification message

+ResourceInfo : ResourceInfoType

+ResourceInfo : ResourceInfoType

+Faults : FaultType

+FaultDetails : Key-Value pairs

1 1..*

+ResourceState : String

StateQuery Operation

StateQueryRequest message

StateQueryFilter : FaultQueryFilterType

StateQueryResponse message

+ResourceInfo : ResourceInfoType

1

0..*

StateQueryFilterType

TBD

1

0..*

Maintenance Operation

MaintenanceRequest message

+ResourceID

MaintenanceResponse message

+ResourceID

+Result : Key-Value pairs

+State = "maintenance"

image19.png

