
Presented by

Date

 Bill Fischofer

July 2015

OpenDataPlane (ODP)
Project Overview and Relationship to g-API

Linaro Networking
Group (LNG)

● What is ODP and why is it needed?

● ODP sponsorship and governance model

● Essential requirements ODP is designed to address

● ODP split API / implementation model

● Portability and Performance results to date

● Application Migration Considerations

Discussion Topics

● ODP was launched in 2013 by a cross section of stakeholders
● Application/system providers (e.g., Cisco, Nokia)
● Silicon providers (e.g., Broadcom, Cavium, Freescale, HI Silicon, Texas Instruments)

ODP: History and Motivation

● ODP API design is a balance between portability and ability to be
mapped efficiently to widely varying platform capabilities
○ Not interested in “least common denominator” APIs
○ Not interested in overly high-level APIs that few if any platforms can support efficiently
○ Expect APIs to evolve as underlying platform capabilities increase

● From the beginning, our goal has been to define a “g-API” for
enabling data plane acceleration while ensuring application
portability across diverse ISAs and platforms

The Linaro Networking Group and
its 13 member companies are
sponsors and upstream
maintainers of ODP

LNG membership is open to all

ODP is fully open source and open
contribution, uses BSD 3-clause
licensing

All ODP design work is carried out
in public with both open face-to-
face meetings and weekly public
architecture calls, and on the ODP
mailing list

ODP Sponsorship and Governance

● Support application portability across diverse ISAs and system
architectures
● Core counts, memory organization, integrated HW capabilities, etc.

● Be able to exploit platform-specific acceleration and offload
capabilities (HW and SW) without application effort
● e.g., HW buffer/packet mgmt, integrated I/O, HW parsing and classification, HW

scheduling and flow ordering, etc.

● Support scalability to many-core architectures without application
redesign
● Application fundamental design unchanged if running on 4, 40, or 400 cores

ODP Essential Requirements

Memory Bandwidth
● Limited by memory technology
● In time it takes network speeds to

increase by 10x, memory speeds
only increase by 3x

● Problem gets worse over time
● NUMA is partial solution
● Forcing rapid evolution in HW

designed for packet processing
● Apps struggle to keep pace

What is the dataplane problem?

Time

Speed

Gb/s

HWSW + NIC SW + HW
offload

10

100

400 +

Technology

ODP Target Solution Space

ODP

● The ODP API is fully open source and defined abstractly for
portability and platform-independence

● Each implementation of ODP realizes the ODP API in an optimal
manner for that platform
● LNG supplies a number of fully open source reference implementations of ODP
● Each ODP implementation is fully under the control of its owner
● Implementations can be open or closed source as business needs determine

● LNG also supplies a validation test suite for ODP
● Enables applications and vendors to confirm that implementations conform to the ODP

API specification

ODP Key Design Concept:
Separation of API from Implementation

Community of ODP
Applications

ODP Application

Platform AOCTEON

ODP API

QorIQ - DPAA

Application can run on any Platform

SDK ASimple
Executive Freescale SDK DPDK

X86

ODP - Application View

ODP demonstrated
to run at negligible
overhead on several
Platform SDKs

Intel x86/DPDK a
work in progress.
Currently at single-
digit overhead. Need
to achieve <2%

ODP - SoC Vendor View

New SoC

Platform can compete for any Socket

Application AOpenVswitch Proxy

ODP API

SDK

Network Stack

Open source value

Name Owner/Maintainer Target Platform Architecture

linux-generic Open contribution,
maintained by LNG

Pure SW, runs on any
Linux kernel. Functional
implementation, not a
performance target.

Any

odp-dpdk Open contribution,
developed by LNG

Intel x86 using DPDK as
SW acceleration layer Intel x86

odp-netmap Open contribution,
developed by LNG

Linux + NETMAP
support (experimental) x86 + ARM

ODP Implementations - 1 of 2

Name Owner/Maintainer Target Platform Architecture

odp-keystone2 Texas Instruments TI Keystone II SoCs ARM Cortex A15

linux-qoriq Freescale Freescale QorIQ SoCs Power

OCTEON Cavium Networks Cavium Octeon SoCs MIPS64

THUNDER Cavium Networks Cavium ThunderX SoC ARMv8

odp-mppa Kalray Kalray MPPA SoCs Proprietary

ODP Implementations - 2 of 2

Additional implementations under development by others

● ODP currently showing application portability across all of its
published implementations

● 100Gb/s IPsec application performance demonstrated publicly

Portability and Performance Results to Date

ODP Application Migration Path for Legacy Apps
Existing Applications can add
ODP functionality on an
incremental basis

Apps still have access to
platform SDKs if they wish

Apps can access HW
directly if they wish (real or
virtual)

ODP implementations
leverage existing SDKs

ODP App

Application Staged Migration Path to ODP

Legacy App Initial port Native port

● Uses SDK or RYO APIs
● Directly tied to specific HW

platform
● I/O via PMDs

● Uses mix of ODP and
legacy APIs

● Semi-portable to other
platforms, limited
acceleration

● I/O via ODP packet I/O
(poll mode) APIs

● Uses ODP APIs
● Fully portable with

transparent platform-
specific acceleration

● Restructured to use ODP
event scheduler for
processing and I/O
scalability

● ODP was designed as g-API from the start 2+ years ago

● The open and equal governance model of an open source project
with all relevant hardware suppliers is absolutely required to arrive
at a solution
● The only way forward is to work together in collaborative development
● Opendataplane.org is already set up to manage this sort of governance and

collaboration: all the relevant CPU/SoC stakeholders are members or otherwise
participating

● PoCs with benchmarks under development now

Summary

For more information, visit:

Thank You

http://opendataplane.org

