

1

Uniform API Design for DPACC

2

Recap

Page 2

AAL：a set of open and common APIs, which shields the difference of accelerators as well as offer a

uniform interface for VNFs. VNFs can involve these APIs to implement various of accelerated functions

(e.g. Crypto, Compression, DPI and Forwarding)

Manager：in charge of the management and the orchestration of accelerator resources and bridging

between VNFs and accelerators.

OAI Hardware(Fixed or Programmable)

OAI Manager

Director

AP-VNF Function

Manager

OAI Resource

Manager

DPI

Driver

#2

DPI

Driver

#1

Crypto

Driver

#2

Crypto

Driver

#1

Compression

Driver

 #2

Compression

Driver

#1

….

DPI API Crypto API Compression API …

VNF #1

DPI Agent

VNF #2

Crypto Agent

VNF #3

Forwarding Agent
….

OAI

Accelerator Abstraction Layer

x86

ARM

FPGA GPU SNP

ASIC

NP ……

DPI
ACC

DPI
ACC

Crypto
ACC

Crypto
ACC

Comp.
ACC

Comp.
ACC

3

HW Accelerators

 Transportation Frontend Driver

Management API

APP API

VNF

Framework

Manager

APP Driver

 Crypto
Driver

Compression
Driver

Forwarding
Driver

 Transportation Backend Driver

AAL API

 AAL Toolkits

 SR-IOV
Driver

Virt-IO
Driver

Others

 SR-IOV
Driver

Virt-IO
Driver

Others Accelerator
Resource Mng.

 Manager Adapter Arbiter & Dispatcher

4

 Work Flows of VNF Acceleration

Phase I: Setting Up

•aal_find_device : Ask AAL whether or not there is a accelerator is available
 input: Function type, such as Crypto, Compression… and other requirement
 output: OK or No, potential accelerator ID if OK(the accelerator will not be created until the next API)
•aal_acquire_device: Ask AAL to enable the accelerator

Input: accelerator ID which is gotten before
Output: OK, which means the accelerator is working
 No, the accelerator can not work

Phase II: Accelerating
•aal_crypto_handle_create: create a process handle with the accelerator
 input: accelerator ID which is bound with this VNF
 output: OK or No, handle ID
•aal_encode_crypto: ask for a crypto process (example)

Input: handle ID, clear text
Output: encrypted text

•aal_handle_release: release a handle
Input: handle ID
Output: OK or NO

Phase III: Release Accelerator
•aal_release: unbind the accelerator
 input: device ID
 output: OK or No

5

Initialization : Accelerator Registering (SR-IOV for instance)

 Manager Hypervisor

 VNF#1

SR-IOV Accelerator

APP

AAL Toolkit

①SR-IOV enabled;
Model: XXXYYY-01234

Resource

Manager

MANO

②The Model is
XXXYYY-01234
Please tell me the
chip’s capability

③This chip can ：
*Accelerator Type: Crypto,
*Others Dynamic image Installation needed

④This chip is :
*SR-IOV based
*Crypto Acc supported;
*image installation needed

6

 Hypervisor

 VNF#1

SR-IOV Accelerator

AAL Toolkit

AAL API

APP

①aal_find_device(Acc. Type: Crypto)

Setting Up: Accelerator Finding (SR-IOV for instance)

②Input:
*Target: VNF#1
*Acc. Type: Crypto

Policy

③Result: OK
An SR-IOV based chip is avaliable

④API return: OK;
Potential Acc. Handle: 123456

7

 Hypervisor

 VNF#1

SR-IOV Accelerator

AAL Toolkit

AAL API

APP

①aal_acquire_device(Acc. No.: 123456)

Setting Up : Accelerator Acquiring (SR-IOV for instance)

SR-IOV Backend Driver

②Enable SR-IOV Backend Driver for the chip

Virtual Accelerator

③Create Virtual
Accelerator

SR-IOV Frontend Driver

⑦Enable SR-IOV Frontend in
VNF

⑧Bind the accelerator,
naming, enable pass-
through mode

 Manager

Resource Manager

④Ask for accelerator image, type is crypto

⑤image for crypto
⑥ install image

8

Thank you!

