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Uniform API Design for DPACC 
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Recap 

Page 2 

AAL：a set of open and common APIs, which shields the difference of accelerators as well as offer a 

uniform interface for VNFs. VNFs can involve these APIs to implement various of accelerated functions 

(e.g. Crypto, Compression, DPI and Forwarding) 

Manager：in charge of the management and the orchestration of accelerator resources and bridging 

between VNFs and accelerators.  
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  Work Flows of VNF Acceleration 

 
Phase I: Setting Up 

•aal_find_device : Ask AAL whether or not there is a accelerator is available 
 input: Function type, such as Crypto, Compression… and other requirement 
 output: OK or No, potential accelerator ID if OK(the accelerator will not be created until the next API) 
•aal_acquire_device: Ask AAL to enable the accelerator 

Input: accelerator ID which is gotten before 
Output: OK, which means the accelerator is working 
               No, the accelerator can not work  

 
Phase II: Accelerating 
•aal_crypto_handle_create: create a process handle with the accelerator 
 input: accelerator ID which is bound with this VNF 
 output: OK or No, handle ID 
•aal_encode_crypto: ask for a crypto process (example) 

Input: handle ID, clear text 
Output: encrypted text 

•aal_handle_release: release a handle 
Input: handle ID 
Output: OK or NO 

 
Phase III: Release Accelerator 
•aal_release: unbind the accelerator 
 input: device ID 
 output: OK or No 
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Initialization :  Accelerator Registering (SR-IOV for instance) 

 Manager  Hypervisor 
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①SR-IOV enabled; 
Model:  XXXYYY-01234 

Resource 

Manager  

 
MANO 

②The Model is 
XXXYYY-01234 
Please tell me the 
chip’s  capability 

③This chip can ： 
*Accelerator Type: Crypto,  
*Others Dynamic image Installation needed  

④This chip is : 
*SR-IOV based  
*Crypto Acc supported; 
*image installation needed 
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 Hypervisor 
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①aal_find_device(Acc. Type: Crypto) 

Setting Up:  Accelerator Finding (SR-IOV for instance) 

②Input:  
*Target: VNF#1 
*Acc. Type: Crypto 

Policy 

③Result: OK 
An SR-IOV based chip is avaliable  

④API return: OK; 
Potential Acc. Handle: 123456 
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 Hypervisor 
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Setting Up : Accelerator Acquiring (SR-IOV for instance)  

SR-IOV Backend Driver 

②Enable SR-IOV Backend Driver for the chip 

Virtual Accelerator 

③Create Virtual 
Accelerator 

SR-IOV Frontend Driver 
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Thank you! 


