Uniform API Design for DPACC

1 V2 Huawel

Recap

VNF #1 VNF #2 VNF #3 OAl
DPI Aqent Crypto Agent Forwarding Agent OAIl Manager

- Director
Accelerator Abstraction Layer

DPI API

DPI
Driver
#1

Crypto API

Crypto
Driver
#1

Compression API

Compression
Driver
#1

AP-VNF Function
Compression Manager

Driver
#2

DPI
Driver
#2

Crypto
Driver
#2

l \
I

OAl Hardware(leedor Proqrammable)\ OAl Resource

’
’
s
/7
DPI DPI Crypto Crypto Comp. Comp. Manager
ACC AR M ACC ACC ACC ACC ACC AS I C

x86 FPGA GPU SNP NP

®AAL : a set of open and common APIs, which shields the difference of accelerators as well as offer a
uniform interface for VNFs. VNFs can involve these APIs to implement various of accelerated functions
(e.g. Crypto, Compression, DPI and Forwarding)

®Manager : in charge of the management and the orchestration of accelerator resources and bridging

between VNFs and accelerators.

Framework

VNF Manager
APP API
APP Driver
c . . AAL API Management API
rypto Compression| | Forwarding
Driver Driver Driver
Transportation Frontend Driver
SR'-IOV Vitjt-IO Others |
Driver Driver
Transportation Backend Driver AAL Toolkits
SR,_IOV Vir.t-IO Others | Arbiter & Dispatcher Accelerator Manager Adapter
Driver Driver Resource Mng.
HW Accelerators

&2 Huawel

Work Flows of VNF Acceleration

Phase I: Setting Up

*aal_find_device : Ask AAL whether or not there is a accelerator is available
input: Function type, such as Crypto, Compression... and other requirement
output: OK or No, potential accelerator ID if OK(the accelerator will not be created until the next API)
*aal_acquire_device: Ask AAL to enable the accelerator
Input: accelerator ID which is gotten before
Output: OK, which means the accelerator is working
No, the accelerator can not work

Phase II: Accelerating

*aal_crypto_handle_create: create a process handle with the accelerator
input: accelerator ID which is bound with this VNF
output: OK or No, handle ID

*aal_encode_crypto: ask for a crypto process (example)
Input: handle ID, clear text
Output: encrypted text

*aal_handle_release: release a handle
Input: handle ID
Output: OKor NO

Phase lll: Release Accelerator

*aal_release: unbind the accelerator
input: device ID
output: OK or No

4 &2 Huawe

Initialization : Accelerator Registering (SR-IOV for instance)

APP
@The Model is (@This chip can :
XXXYYY-01234 *Accelerator Type: Crypto,
Please tell me the *Others Dynamicimage Installation needed
chip’s capability
Hypervisor Manager
AAL Toolkit
A 4

< | Resource

@Thischipis : Manager

*SR-IOV based

*Crypto Acc supported;

*image installation needed

A 4

(DSR-I0V enabled;
Model: XXXYYY-01234

SR-IOV Accelerator

5 V2 Huawel

Setting Up: Accelerator Finding (SR-IOV for instance)

VNF#1
APP

AAL AP i

T | (Daal_find_device(Acc. Type: Crypto) }
@API return: OK; \

Potential Acc. Handle: 123456

@Input:
*Target: VNF#1
v — *Acc. Type: Crypto

Hypervisor

AAL Toolkit

A 4

Policy

P
<«

(®Result: OK
An SR-IOV based chip is avaliable

SR-IOV Accelerator

6 &2 Huawe

Setting Up : Accelerator Acquiring (SR-IOV for instance)

VNF#1 Manager
APP
AAL API
SR-IOV Frontend Driver | (Daal_acquire_device(Acc. No.: 123456)
A
(DEnable SR-IOV Frontend in
VNF
Hypervisor
v Resource Manager
AAL Toolkit

(®Bind the accelerator,
naming, enable pass- v (@Enable SR-IOV Backend Driver for the chip

SreEa et @Ask for accelerator image, type is crypto

SR-IOV Backend Driver >

>
<

(®image for crypto

(®)Create Virtual

® installimage
v v Accelerator v

Virtual Accelerator

SR-IOV Accelerator

7 &2 Huawe

Thank you!

8 V2 Huawel

