

1

Uniform API Design for DPACC

2

Recap

Page 2

AAL：a set of open and common APIs, which shields the difference of accelerators as well as offer a

uniform interface for VNFs. VNFs can involve these APIs to implement various of accelerated functions

(e.g. Crypto, Compression, DPI and Forwarding)

Manager：in charge of the management and the orchestration of accelerator resources and bridging

between VNFs and accelerators.

OAI Hardware(Fixed or Programmable)

OAI Manager

Director

AP-VNF Function

Manager

OAI Resource

Manager

DPI

Driver

#2

DPI

Driver

#1

Crypto

Driver

#2

Crypto

Driver

#1

Compression

Driver

 #2

Compression

Driver

#1

….

DPI API Crypto API Compression API …

VNF #1

DPI Agent

VNF #2

Crypto Agent

VNF #3

Forwarding Agent
….

OAI

Accelerator Abstraction Layer

x86

ARM

FPGA GPU SNP

ASIC

NP ……

DPI
ACC

DPI
ACC

Crypto
ACC

Crypto
ACC

Comp.
ACC

Comp.
ACC

3

HW Accelerators

 Transportation Frontend Driver

Management API

APP API

VNF

Framework

Manager

APP Driver

 Crypto
Driver

Compression
Driver

Forwarding
Driver

 Transportation Backend Driver

AAL API

 AAL Toolkits

 SR-IOV
Driver

Virt-IO
Driver

Others

 SR-IOV
Driver

Virt-IO
Driver

Others Accelerator
Resource Mng.

 Manager Adapter Arbiter & Dispatcher

4

 Work Flows of VNF Acceleration

Phase I: Setting Up

•aal_find_device : Ask AAL whether or not there is a accelerator is available
 input: Function type, such as Crypto, Compression… and other requirement
 output: OK or No, potential accelerator ID if OK(the accelerator will not be created until the next API)
•aal_acquire_device: Ask AAL to enable the accelerator

Input: accelerator ID which is gotten before
Output: OK, which means the accelerator is working
 No, the accelerator can not work

Phase II: Accelerating
•aal_crypto_handle_create: create a process handle with the accelerator
 input: accelerator ID which is bound with this VNF
 output: OK or No, handle ID
•aal_encode_crypto: ask for a crypto process (example)

Input: handle ID, clear text
Output: encrypted text

•aal_handle_release: release a handle
Input: handle ID
Output: OK or NO

Phase III: Release Accelerator
•aal_release: unbind the accelerator
 input: device ID
 output: OK or No

5

Initialization : Accelerator Registering (SR-IOV for instance)

 Manager Hypervisor

 VNF#1

SR-IOV Accelerator

APP

AAL Toolkit

①SR-IOV enabled;
Model: XXXYYY-01234

Resource

Manager

MANO

②The Model is
XXXYYY-01234
Please tell me the
chip’s capability

③This chip can ：
*Accelerator Type: Crypto,
*Others Dynamic image Installation needed

④This chip is :
*SR-IOV based
*Crypto Acc supported;
*image installation needed

6

 Hypervisor

 VNF#1

SR-IOV Accelerator

AAL Toolkit

AAL API

APP

①aal_find_device(Acc. Type: Crypto)

Setting Up: Accelerator Finding (SR-IOV for instance)

②Input:
*Target: VNF#1
*Acc. Type: Crypto

Policy

③Result: OK
An SR-IOV based chip is avaliable

④API return: OK;
Potential Acc. Handle: 123456

7

 Hypervisor

 VNF#1

SR-IOV Accelerator

AAL Toolkit

AAL API

APP

①aal_acquire_device(Acc. No.: 123456)

Setting Up : Accelerator Acquiring (SR-IOV for instance)

SR-IOV Backend Driver

②Enable SR-IOV Backend Driver for the chip

Virtual Accelerator

③Create Virtual
Accelerator

SR-IOV Frontend Driver

⑦Enable SR-IOV Frontend in
VNF

⑧Bind the accelerator,
naming, enable pass-
through mode

 Manager

Resource Manager

④Ask for accelerator image, type is crypto

⑤image for crypto
⑥ install image

8

Thank you!

