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Uniform API Design for DPACC 
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Recap 

Page 2 

AAL：a set of open and common APIs, which shields the difference of accelerators as well as offer a 

uniform interface for VNFs. VNFs can involve these APIs to implement various of accelerated functions 

(e.g. Crypto, Compression, DPI and Forwarding) 

Manager：in charge of the management and the orchestration of accelerator resources and bridging 

between VNFs and accelerators.  
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  Work Flows of VNF Acceleration 

 
Phase I: Setting Up 

•aal_find_device : Ask AAL whether or not there is a accelerator is available 
 input: Function type, such as Crypto, Compression… and other requirement 
 output: OK or No, potential accelerator ID if OK(the accelerator will not be created until the next API) 
•aal_acquire_device: Ask AAL to enable the accelerator 

Input: accelerator ID which is gotten before 
Output: OK, which means the accelerator is working 
               No, the accelerator can not work  

 
Phase II: Accelerating 
•aal_crypto_handle_create: create a process handle with the accelerator 
 input: accelerator ID which is bound with this VNF 
 output: OK or No, handle ID 
•aal_encode_crypto: ask for a crypto process (example) 

Input: handle ID, clear text 
Output: encrypted text 

•aal_handle_release: release a handle 
Input: handle ID 
Output: OK or NO 

 
Phase III: Release Accelerator 
•aal_release: unbind the accelerator 
 input: device ID 
 output: OK or No 
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Initialization :  Accelerator Registering (SR-IOV for instance) 

 Manager  Hypervisor 
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①SR-IOV enabled; 
Model:  XXXYYY-01234 
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②The Model is 
XXXYYY-01234 
Please tell me the 
chip’s  capability 

③This chip can ： 
*Accelerator Type: Crypto,  
*Others Dynamic image Installation needed  

④This chip is : 
*SR-IOV based  
*Crypto Acc supported; 
*image installation needed 
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 Hypervisor 
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Setting Up:  Accelerator Finding (SR-IOV for instance) 

②Input:  
*Target: VNF#1 
*Acc. Type: Crypto 

Policy 

③Result: OK 
An SR-IOV based chip is avaliable  

④API return: OK; 
Potential Acc. Handle: 123456 
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Setting Up : Accelerator Acquiring (SR-IOV for instance)  
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⑥ install image 



 

 

8 

Thank you! 


