
Data Plane Acceleration (DPACC)
API Guidelines
											

Table of Contents
1	Basic Types	3
2	API Naming convention	4
3	Variable Naming convention	5
4	Function Arguments and Return Values	5

[bookmark: _Toc443678785]Basic Types

Linux type definitions shall be followed. For example int, u64, char etc. shall be used.
https://www.kernel.org/doc/Documentation/CodingStyle
http://www.gnu.org/prep/standards/standards.html

[bookmark: _Toc443678786]API Naming convention	Comment by cmcc: This is a very useful summary of API naming pattern. However, it seems that the earlier proposed ipsec API (as in later section) is not strictly following the pattern specified here. E.g. g_ipsec_la_sa_add.

	Comment by Rajeshkumar K: Yes. There are some gaps in IPsec and PDCP.
As we don’t have any reference. Will fill the gaps and update based this document.

apitype_acceleratorname_acceleratortype_operation_commonname
· apitype
· g for g-API

· acceleratorname
· crypto
· ipsec
· pdcp

· acceleratortype (as defined in dpacc usecase[X])	Comment by cmcc: Suggest to add a reference to dpacc usecase.
· la for lookaside model
· in for inline model
· dp for data path offload model	Comment by cmcc: What do you mean by this model? Is it meant for the “external model” or “data path offload model” in dpacc usecase? If so, shall we use the same terms?

	Comment by Rajeshkumar K: Yes.

· operation	Comment by cmcc: Not sure that the proposed operations are applicable for all usecase. E.g. as I see from your earlier proposal for ipsec, encap and decap are used rather than “process”. So do we need to state that we also allow for usecase-specifc operations. And for these listed here as common operations. Does is make sense?
	Comment by Rajeshkumar K: Yes. These are some of the common names of the operation.
· open
· close
· get
· set
· add
· delete
· find
· process
· notify

· commonname(s)
· api_version
· active_list

Example:
g_ipsec_la_get_api_version
g_pdcp_la_get_api_version
g_ipsec_la_open
g_pdcp_la_close

[bookmark: _Toc443678787]Variable Naming convention

Naming convention for variables shall follow Linux style, readable and separated by underscore, when necessary.

[bookmark: _Toc443678788]Function Arguments and Return Values

Return values SUCCESS or FAILURE.
For control or setup APIs that are used to setup states in the hardware accelerator it is preferable to use data structures to pass input and output parameters. While these setup or control functions do not come in the data path and hence do not impact performance, having parameters defined as structures enables extensibility in future without changing API prototypes. Structure introduced for passing in as parameters for functions shall have the function name as prefix and inargs/outargs as suffixes to indicate input and output arguments. For example, the input argument to g_ipsec_la_sa_add() would be g_ipsec_la_sa_add_inargs and g_ipsec_la_sa_add_outargs.
For data processing APIs, data structures are avoided in the packet processing calls and linear buffers are used with performance considerations in mind.
APIs shall also have flags to modify API behavior such as synchronous/asynchronous, response expected or not.
For example a set up API for setting up SAs would be as follows:

int g_ipsec_la_sa_add(
struct g_ipsec_la_handle *handle, /* Accelerator handle */ const struct g_ipsec_la_sa_add_inargs *in, /* Input */ enum g_ipsec_la_control_flags flags, /* API flags */ struct g_ipsec_la_sa_add_outargs *out /* Output */,
struct g_ipsec_la_resp_args resp /* response callback in case

asynchronous mode with response flag is set */);

In the above API, g_ipsec_la_control_flags and g_ipsec_la_resp_args are defined as follows:

enum g_ipsec_la_control_flags
{
G_IPSEC_LA_CTRL_FLAG_ASYNC=1, /* If Set, API call be asynchronous.
Otherwise, API call will be synchronous */ G_IPSEC_LA_CTRL_FLAG_NO_RESP_EXPECTED=1, /* If set, no response is
expected for this API call */
};

struct g_ipsec_la_resp_args
{
struct g_ipsec_la_resp_cbfn cb_fn;
/* Callback function if ASYNC flag is chosen */
void *cb_arg;
int32_t cb_arg_len; /* Callback argument length */
}
Application can request the response to be returned synchronously or asynchronously (G_IPSEC_LA_CTRL_FLAG_ASYNC). If the response is requested asynchronously, then the application should provide a callback function pointer and callback argument.

Also, in some scenarios, the API layer may have to do additional operations to force a response from the backend. The flag G_IPSEC_LA_CTRL_FLAG_NO_RESP_EXPECTED can be used by application to indicate whether the application should force the response from the backend or not.

A packet processing API in the case of IPSec would be as follows:

Prototype:
int32_t g_ipsec_la_packet_encap(
struct g_ipsec_la_handle *handle, struct g_ipsec_la_control_flags flags,
struct g_ipsec_la_sa_handle *handle; /* SA Handle */ uint32 num_sg_elem; /* num of Scatter Gather elements */ struct g_ipsec_la_data in_data[];
/* Array of data blocks */ struct g_ipsec_la_data out_data[];
/* Array of output data blocks */ struct g_api_resp_args resp)

All the enum should be declared to support the binary compatibility.
For ex:
enum g_pdcp_sn_size
{
 G_PDCP_SN_SIZE_5=5,
 G_PDCP_SN_SIZE_7=7,
 G_PDCP_SN_SIZE_12=12,
 G_PDCP_SN_SIZE_15=15,
};

Contributors:
Subhashini Venkataramanan,
Srini Addepalli

image1.png

