[image: ]
NXP Semiconductor	
Authors: Vineet K Agarwal, RajeshKumar K, Alex	




	

Virtio-PDCP Security Accelerator
g-API

  
Revision History

	Date
	Version
	Author
	Reason

	01/22/2015
	1
	NXP
	Separated gAPI / Virtio sections from design document. This document details the g-API .  

	
	
	
	

	
	
	
	

	
	
	
	






Table of Contents
Table of Contents	3
1	Introduction	4
2	References	5
3	Abbreviations	5
4	Scope	5
5	PDCP Packet Processing – Look Aside Accelerator Packet Flow	6
6	Application Usage	8
7	g-APIs	10
7.1	Accelerator Management APIs	10
7.2	Functional APIs	10
7.2.1 Control or setup APIs	10
7.2.2 Data Processing APIs	10
7.3	Accelerator Management APIs - definitions	11
7.3.1	g_pdcp_la_get_api_version	11
7.3.2	g_pdcp_la_open	11
7.3.3	g_pdcp_la_close	11
7.4	Control or setup APIs – definitions	12
7.4.1	g_pdcp_la_capabilities_get	12
7.4.2	g_pdcp_la_notification_hooks_register	12
7.4.3	g_pdcp_la_notification_hooks_deregister	12
7.4.4	g_pdcp_la_sec_create	13
7.4.5	g_pdcp_la_sec_get	14
7.4.6	g_pdcp_la_sec_del	15
7.5	Data Processing APIs – definitions	16
7.5.1	g_pdcp_la_process_packet	16
7.5.2	g_pdcp_la_get_maxq	17
7.5.3	g_pdcp_la_get_queue	17
7.5.4	g_pdcp_la_poll	17
7.6	G-API data types	18



[bookmark: _Toc441234778]Introduction
A recent uplink/downlink performance analysis of an LTE protocol stack on a representative virtual mobile platform [2, 3] has identified the Protocol Data Convergence Protocol (PDCP) as the most time-critical component within the Layer 2 software architecture. PDCP incorporates two computationally expensive tasks: 
-The ciphering and/or integrity algorithms, responsible for user data protection and for providing a secure communication.
-The Robust Header Compression (ROHC) algorithm, which compresses IP packet headers. 
While both protocol functions show long processing times, ciphering & integrity comes in the first place followed by ROHC.
CPU cycles consumed in software based PDCP Security processing envolves:
1. IV construction: Concatenation of negotiated key, HFN|SN, Direction and bearer.
2. Applying crypto algorithm on the PDU using IV computed above. 
3. To perform confidentiality and integrity protection requires above 2 steps repeated.
With accelerators offering PDCP Protocol offload can save CPU cycles that makes it worth by boosting performance.
Some of network processors have H/W accelerators supporting PDCP Security acceleration, that can be leveraged to offload the most computationally extensive task i.e. security algorithms for data confidentiality and integrity protection.

On the other hand, virtualization of logically separated layers of LTE stack are in great demands by most of the service providers for well-known advantages of virtualized software.
Given that PDCP security accelerator is available for offload on the host processor, for PDCP running as VNF under guest Virtual Machine (VM), we have a challenge to leverage the accelerator on host processor from VM.
In this document, we are proposing a virtio-pci based PDCP Security driver and device as per the Virtio Standards, so that the VNF can use the Virtio PDCP Security driver to access the PDCP Security Accelerator available on host processor. Using the standard Virtio-pci based Driver the VNF can access any underlying vendor specific PDCP Security Accelerator. 



[bookmark: _Toc441234779]References
[1] The 3rd Generation Partnership Project (3GPP)
[2] D. Szczesny, S. Hessel, A. Showk, A. Bilgic, U. Hildebrand, and V. Frascolla, “Performance analysis of LTE protocol processing on an ARM based mobile platform,” in Proceedings of the 11th International Symposium on System-on-Chip (SoC '09), pp. 56–63, Tampere, Finland, October 2009. View at Publisher· View at Google Scholar · View at Scopus
[3] D. Szczesny, S. Hessel, A. Showk, A. Bilgic, U. Hildebrand, and V. Frascolla, “Joint uplink and downlink performance profiling of LTE protocol processing on a mobile platform,” International Journal of Embedded and Real-Time Communication Systems, vol. 1, no. 4, pp. 21–39, 2010. View at Publisher ·View at Google Scholar
[4] Packet Data Convergence Protocol (PDCP ... - 3GPP)
[bookmark: _Toc441234780]Abbreviations
VNF 	: Virtual Network Function
PDCP	: Packet Data Convergence Protocol.
SRB	: Signaling Radio Bearer.
DRB	: Data Radio Bearer.
VM	: Virtual Machine
KVM	: Kernel Virtual Machine
MAC-I	: Message Authentication Code – Integrity
SN	: Sequence Number
PCI	: Peripheral Component Interconnect
DL	: Downlink
UL	: Uplink
LCM	: Least Common Multiple
[bookmark: _Toc441234781]Scope
This document identifies a Virtio PDCP Security Accelerator which will perform PDCP Record Layer Acceleration.  (e.g. Freescale SEC engine). In this case, the Guest VM can push PDCP Security Context into the hardware accelerator.  Subsequently when buffers are submitted, the accelerator can perform Encap Security processing (clear packet to encrypted packet and/or add MAC-I for RBs) or Decap Security processing (encrypted packet to clear packet and/or authenticate for RBs) as required.   This belongs to Look Aside class of accelerators as, the Guest VM submits packets to the accelerator and receives the processed packet from the accelerator before sending the packet out.  
[bookmark: _Toc413347211][bookmark: _Toc441234782]PDCP Packet Processing – Look Aside Accelerator Packet Flow






           Host User Space

Hardware
VNF
Virtio-net Frontend
Virtio-net Frontend
Virtio-pdcp Frontend
Guest User Space
ODP based 
PDCP
QEMU
vRING
 Transport
Virtio-pdcp Backend
Host Kernel
KVM
vHost-net
PDCP Security Accelerator
NIC
Backplane Processing RLC/MAC/PHY
Backhaul Processing GTPU/IPSec/QoS
EPC
Guest Kernel Space

















[image: ]
Figure 1 PDCP Packet Processing –Look Aside Accelerator Flow
Figure 1 shows the flow of packets when PDCP Look aside accelerator is used. This figure shows 
Packet flow between EPC – eNodeB - RLC-MAC:
· Packets processed by Vhost-Net
· Packet announced to VNF through Virtio-Net driver
· Packets arrive at the PDCP module for Processing
· As packets are submitted by the PDCP Module to the Virtio-pdcp front end driver, the buffers are put in the Virtio Descriptor Vrings or Virt Qs to be transferred to the Virtio-pdcp Backend.  
· The Virtio-pdcp Backend is responsible for translating the packets from Virt Q Descriptor to the actual hardware accelerator in a message that the accelerator understands and vice-versa. 
· The Virtio-pdcp Backend is also responsible for picking up processed packets from the hardware accelerator, updating the VirtQ rings and notifying the Guest VNF. 
· The processed packets are sent out through the Virtio-net interface for post security processing.


[bookmark: _Toc441234783]Application Usage 
virtio_pdcp_process_cbk() Receive processed native in/out buffer and it’s count, status. 
Poll on                         specific Virtqueue to receive packets on registered callback function. g_virtio_pdcp_poll(vq1)
3


2
PDCP Application


Pass security parameters,        application handle and packet processing cbk function.
Store the pdcp context handle.
    Send native in/out buffer and it’s count 
4
1
         Pass pdcp context handle 
        to delete.

Check status (success/failure_

In buf
Out buf



g_virtio_pdcp_poll
Poll on selected Virtqueue’s  
Used vring 
g_pdcp_sec_create() – Create virtio_pdcp_context_block, fills the security params & Command type (VIRTIO_PDCP_CTRL_ADD_SEC_CONTEXT) into PDCPhdr (virtio_net_hdr_mz). Enqueue to avail vring and notify.  call g_virtio_pdcp_poll() & wait for the response

Frontend [Guest]
]

g_pdcp_process_packet() – Make in/out buffers as single chain of buffers, VIRTIO_PDCP_CTRL_PROCESS_PKT.
 Enqueue to avail vring and notify. 
Return to caller,unblocking call. 
g_pdcp_sec_del() –Pass the backend handle,command type (VIRTIO_PDCP_CTRL_DEL_SEC_CONTEXT)



Avail vRing
Used vRing


	     Virtqueue - 1

Data Virtqeue (s)





Parse Security  params
VIRTIO_PDCP_CTRL_ADD_SEC_CONTEXT – Create security context, return the backend handle and the status.


Parse the Header for commands 

Backend   [Host]

VIRTIO_PDCP_CTRL_PROCESS_PKT – Find the UL/DL sec context. Apply security, send processed out buffers as well as in buffers and status. 

Fetch the backend handle
    VIRTIO_PDCP_CTRL_DEL_SEC_CONTEXT – Delete the security context. Return the status. 
Parse native input buffers






Figure 2: G-API functions
Refer Figure 2 for the G-API functional flows.
All the command G-API  (CREATE/READ/DELETE) supports both SYNC/ASYNC modes of operation.
[bookmark: _Toc417287135]If G_PDCP_CTRL_FLAG_ASYNC flag is set, API call be asynchronous. Otherwise, API call will be synchronous.


[bookmark: _Toc441234784]g-APIs
The application Interface APIs (g-APIs) have two components, namely the Accelerator Management APIs and the functional APIs.
[bookmark: _Toc441234785]Accelerator Management APIs


The following APIs shall be supported for Accelerator Management.
1. g_pdcp_la_get_api_version
2. g_pdcp_la_open
3. g_pdcp_la_close
[bookmark: _Toc441234786]Functional APIs

The functional APIs are in turn classified to control or setup APIs and data processing APIs. Each API requires an accelerator handle, which the application must have obtained by calling g_pdcp_la_open() function.
[bookmark: _Toc441234787]7.2.1 Control or setup APIs
1. g_pdcp_la_capabilities_get
2. g_pdcp_la_notification_hooks_register
3. g_pdcp_la_notification_hooks_deregister
4. g_pdcp_la_sec_create
5. g_pdcp_la_sec_get
6. [bookmark: _GoBack]g_pdcp_la_sec_del

[bookmark: _Toc441234788]7.2.2 Data Processing APIs

1. g_pdcp_la_process_packet
2. g_pdcp_la_get_maxq
3. g_pdcp_la_get_queue
4. g_pdcp_la_poll
[bookmark: _Toc441234789]
Accelerator Management APIs - definitions

[bookmark: _Toc441234790]g_pdcp_la_get_api_version

int32_t g_pdcp_la_get_api_version(char *version);

/* Function Name: g_pdcp_la_get_api_version
* Input/Output: a variable to hold the version
* Return Value: G_PDCP_SUCCESS (or) G_PDCP_FAILURE 
* Description: Application to use this api to get the API version */

Application can use this API to get the underlying API version.

[bookmark: _Toc441234791]g_pdcp_la_open

int32_t g_pdcp_la_open(

struct g_pdcp_la_open_inargs *in,
struct g_pdcp_la_open_outargs *out);

/* Function Name: g_pdcp_la_open

* in: application identity, callback function to invoke when the underlying accelerator connection is broken, callback argument and length of the same.
out: handle to the accelerator
* Return Value: G_PDCP_SUCCESS (or) G_PDCP_FAILURE

* Description : Get a handle to an PDCP Look Aside Accelerator Instance.
*/

An Application shall use this API to open a virtual The application registers a callback function to be invoked, if the underlying virtual accelerator association is broken. The application is expected to take corrective action such as closing the current handle and opening a new handle if required.
[bookmark: _Toc441234792]g_pdcp_la_close

int32_t g_pdcp_la_close(struct g_pdcp_la_handle *handle);

/* Function Name: g_pdcp_la_close

* Input	: g_pdcp_la_handle *handle
* Output	: None
* Return Value: G_PDCP_SUCCESS (or) G_PDCP_FAILURE

* Description : Given a handle, close the virtual accelerator instance */

Application should use this API to close the handle of the previously opened accelerator instance. Application may no longer access the underlying accelerator.



[bookmark: _Toc441234793]Control or setup APIs – definitions

[bookmark: _Toc441234794]g_pdcp_la_capabilities_get 
int32_t g_pdcp_la_capabilities_get(
struct g_pdcp_la_handle *handle,
enum g_pdcp_la_control_flags flags,
struct g_pdcp_la_cap_get_outargs *out,
struct g_pdcp_la_resp_args *resp);

/* Function Name: g_pdcp_la_capabilities_get

* Input: handle – accelerator handle with optional group handle; flags indicating SYNC or ASYNC, Response required or not; In this case response is required.
out – Pointer to the output parameter structure (Capabilities);
resp – Response callback function and details in case ASYNC response is requested
 * Output: Success or Failure
 * Description: Returns the capabilities of the underlying accelerator.
In the case of synchronous response, the out parameter has the capabilities, otherwise, the resp callback function is invoked with the capabilities
*/

Application can call this API to find out the capabilities offered by the underlying virtual PDCP accelerator. The response may be returned synchronously or asynchronously based on the Application’s preference as set by the flags argument. When returned synchronously, the capabilities are returned by the out parameter.
When returned asynchronously, the capabilities are passed as type struct g_pdcp_la_cap_get_outargs through the response callback function.

[bookmark: _Toc441234795]g_pdcp_la_notification_hooks_register
   TBD
[bookmark: _Toc441234796]g_pdcp_la_notification_hooks_deregister
  TBD



[bookmark: _Toc441234797]g_pdcp_la_sec_create
int32_t g_pdcp_la_sec_create(
	  const struct g_pdcp_sec_la_add_inargs *in,
        struct g_pdcp_sec_la_add_outargs *out,
        struct g_pdcp_la_resp_args  *resp);


/* Function Name: g_pdcp_la_sec_create
 *Parameters:  
 *handle: Accelerator handle, 
 *Input Arguments: in {flags,sec_params, pkt_cb_fn, add_cb_fn, ctxt_handle} 
 *     flags: Synchronous or asynchronous, Response required or not;   
 *     sec_params:	security parameters, 
 *	  pkt_cb_fn:	 packet processing call back function 
*	  add_cb_fn:	 call back function when the response is expected asynchronously
 * Out Argument: out - Result and Security Handle; 
 * resp: Response callback 
 *        function and callback argument in case ASYNC response is      
 *        requested
 * Return Value: G_PDCP_SUCCESS (or) G_PDCP_FAILURE 
 * Description: Application uses this API to create PDCP Security     
 *              context 
*/
Application can call this API to create PDCP Security context. This API returns G_PDCP_SUCCESS when the context has been successfully (if synchronous response is expected) created by the Virtual Accelerator. A Handle is returned by this API in the response. Application is expected to use this Handle in subsequent calls such as g_pdcp_la_sec_del , or one of the Read context commands (g_pdcp_la_sec_get ) or packet processing commands (g_pdcp_la_process_packet).
This initiates VIRTIO_PDCP_CTRL_ADD_SEC_CONTEXT command to backend driver.
	
The response can be synchronous or asynchronous depending on the flags in input arguments. After enqueue PDCP driver polls for the status message from the Host, updates the backend handle in corresponding context maintained by Frontend driver and return to the application.




[bookmark: _Toc441234798]g_pdcp_la_sec_get 
    int32_t g_pdcp_la_sec_get(
	struct g_pdcp_la_handle *handle,
	const struct g_pdcp_la_sec_get_inargs *in,
	struct g_pdcp_la_sec_get_outargs *out,
	struct g_pdcp_la_resp_args  *resp);

/* Function Name: g_pdcp_la_sec_get
 * Input: Virtual Accelerator Handle (handle/group handle), Input 
 *        arguments that includes sec_handle (valid for get exact or 
 *        get next calls) Operation Get First/Get First N/
 *        Get Next/Get Next N/Get Exact/, number   of
 *        contexts to read 
 *        flags: API control flags, out: contains required  
 *        memory to hold the output information,
 *        result: SUCCESS or error code; resp: Optional response  
 *        callback function and arguments, in case ASYNC flag is set. 
 * Return Value: Success or Error
 * Description: Application/Sub-application can call this API to read 
 *              Security Information or statistics
 */

Application can use this API to retrieve security context or statistics. For convenience several flags are available, such as ‘get first’, get first n number of contexts, get next, get next n number of contexts and get_exact. Application has the flexibility to get either the security information or the statistics.

This is synchronous call. After enqueue PDCP driver polls for the status message from the Host and return to the application.  


[bookmark: _Toc441234799]g_pdcp_la_sec_del

   int32_t g_pdcp_la_sec_del(struct g_pdcp_la_handle *handle,
        const struct g_pdcp_la_sec_del_inargs *in,
        struct g_pdcp_la_sec_del_outargs *out,
        struct g_pdcp_la_resp_args  *resp);

/* Function Name: g_pdcp_la_sec_del
 * Input: Accelerator Handle, Security context Handle
 * Input/Output: Success or error code
 * Description: Given the virtual accelerator handle and security handle, delete the context
 */ 

Application calls this API to delete the PDCP security context the virtual accelerator. This initiates VIRTIO_PDCP_CTRL_ DEL_SEC_CONTEXT command to backend driver.

This is synchronous call. After enqueue PDCP driver polls for the status message from the Host and return to the application.  


[bookmark: _Toc441234800]Data Processing APIs – definitions

[bookmark: _Toc441234801]g_pdcp_la_process_packet

    int32_t g_pdcp_la_process_packet(
struct g_pdcp_la_handle *handle, 
struct g_pdcp_la_process_packet_inargs *in,
        struct g_pdcp_la_resp_args  *resp);
/*
 * Function Name: g_pdcp_la_process_packet
 * Input: Accelerator handle, 
 *  Input Arguments (  
 *   handle – security handle
 *   n_in_bufs – no.of in buffers, 
 *   n_out_bufs – no.of out buffers
 *    pdcp_count 
 *   *inbuf – Chain of input buffers pointer
 *   *outbuf - Chain of output buffers pointer
 * *pkt_opaque – opaque pointer
 * return :result
 *        Success or error code to indicate packet has been submitted 
 *        to accelerator or not. Resp: includes the callback function 
 *        that will be called on completion of packet processing.
 */

Application calls this API for PDCP security processing on the packet. When the application submits the security Handle, and the set of input and output(in resp args) buffers to the virtual accelerator, the application expects the virtual accelerator for PDCP security processing. 

The response can be synchronous or asynchronous depending on the flags in input arguments. After enqueue PDCP driver polls for the status message from the Host and return to the application.
If asynchronous response is expected, after enqueue PDCP driver returns the status to the application. Application is expected to poll on the Queue by calling g_pdcp_la_poll function to receive the processed buffers using the registered callback function during the g_pdcp_la_sec_create. 


[bookmark: _Toc441234802]g_pdcp_la_get_maxq

uint16_t g_pdcp_la_get_maxq(void);
This function returns the maximum queue supported by the PDCP device. 
[bookmark: _Toc441234803]g_pdcp_la_get_queue

void g_pdcp_la_get_queue(uint16_t queue_id, void **qptr);
This function returns the virtqueue pointer to the qptrs, which corresponds to queue_id (queue index). 
[bookmark: _Toc441234804]g_pdcp_la_poll

void g_pdcp_la_poll(void *vq)

Application calls this API for polling on the used ring. On reception of the packets, the registered packet processing callback invoked. This is non-blocking call, it checks the used ring of the given virtio queue, and if some job is available in the used ring it invokes the corresponding call back function to pass the information back to application. If the response is for create command, it updates the backend handle in corresponding context maintained by Frontend driver.



[bookmark: _Toc441234805]G-API data types
[bookmark: _Toc413346564][bookmark: _Toc413346565]

#define CIPHER_KEY_LEN      16
#define AUTH_KEY_LEN         16

enum g_pdcp_auth_alg {
	G_PDCP_AUTH_ALG_SNOWF9 = 1,   /* MD5 HMAC Authentication Algo. */
	G_PDCP_AUTH_ALG_AES = 2,  /* SHA1 HMAC Authentication Algo. *
	G_PDCP_AUTH_ALG_ZUC = 3 ,	/* AES-XCBC Authentication Algo. */
	G_PDCP_AUTH_ALG_NONE = 4,	/* No Authentication */
};
enum g_pdcp_cipher_alg {
	G_PDCP_CIPHER_ALG_SNOWF8 = 1,	
	G_PDCP_CIPHER_ALG_AES = 2,
	G_PDCP_CIPHER_ALG_ZUC = 3,
	G_PDCP_CIPHER_ALG_NULL = 4 /* NULL Encryption algorithm */
};

enum g_pdcp_sn_size
{
  G_PDCP_SN_SIZE_5=5,
  G_PDCP_SN_SIZE_7=7,
  G_PDCP_SN_SIZE_12=12,
  G_PDCP_SN_SIZE_15=15,
};


enum g_pdcp_proto_dir
{
  G_PDCP_ENCAP = 1,
  G_PDCP_DECAP = 2
};


enum g_pdcp_pkt_dir
{
  G_PDCP_UL = 1,
  G_PDCP_DL = 2
};

enum g_pdcp_notify_type
{
G_PDCP_COUNT_THRESHOLD = 1,
G_PDCP_REL_COUNT_THRESOLD = 2,
};


enum g_pdcp_la_control_flags
{
	G_PDCP_CTRL_FLAG_ASYNC = 1, /* If Set, API call be asynchronous. Otherwise, API call will be synchronous */
	G_PDCP_CTRL_FLAG_NO_RESP_EXPECTED = 2, /* If set, no response is expected for this API call */
}; 

Application shall use the above data structure to pass the response requested – async or sync and whether a response is required or not. This structure is a parameter in most of the APIs.

enum g_pdcp_sa_get_op {
	G_PDCP_LA_SEC_GET_FIRST_N = 1,
	G_PDCP_LA_SEC_GET_NEXT_N = 2,
	G_PDCP_LA_SEC_GET_EXACT = 3
};

enum g_pdcp_return_codes
{
    G_PDCP_SUCCESS= 1,
    G_PDCP_FAILURE = 2,
};

struct g_pdcp_la_handle {
	void *handle;
};

struct g_pdcp_sec_handle {
	void *handle;   /* context handle */
 };

struct g_pdcp_auth_algo_cap {
	uint32_t	snow_f9:1,
			aes:1,
			zuc:1,
			none:1
};			 
struct g_pdcp_cipher_algo_cap {
	uint32_t	snowf8:1,
			aes:1,
			zuc:1,
			null:1;
};

struct g_pdcp_capabilities
{
	uint32_t pdcp_features; /*subset of VIRTIO_PDCP_FEATURES negotiated with backend*/
	struct g_pdcp_auth_algo_cap auth_algo_caps;
	struct g_pdcp_cipher_algo_cap cipher_algo_caps;
}

struct g_pdcp_la_cap_get_outargs
{
	struct g_pdcp_capabilities caps; /* Capabilities */
}

struct g_pdcp_sec_params
{
    enum g_pdcp_auth_alg auth_algo;
    uint8_t auth_key[AUTH_KEY_LEN];
    uint32_t auth_key_len_bits;
    enum g_pdcp_cipher_alg cipher_algo;
    uint8_t cipher_key[CIPHER_KEY_LEN];
    uint32_t cipher_key_len_bits;
    uint8_t g_sn_size;
    enum g_pdcp_pkt_dir pkt_dir;
    enum g_pdcp_proto_dir proto_dir;
    uint32_t hfn;
    uint32_t bearerid;
    uint32_t count_threshold; 
}

typedef void(*g_pdcp_add_context_resp_cbfn)(void *cb_arg, struct g_pdcp_sec_la_add_outargs);
- The callback function is used to pass response for the PDCP create command (asynchronous mode) from Backend.

typedef void(*g_pdcp_pkt_process_resp_cbfn)(void *cb_arg, void *pkt_handle,
                  void *inbuf, void *outbuf,
                  uint32_t n_in_bufs, uint32_t n_out_bufs,
                  int32_t result);
- The callback function is similar to the input arguments, it return the result, no. of input buffer, no. of output buffer, in and out chained buffer pointer.


struct g_pdcp_sec_la_add_inargs
{
    enum g_pdcp_la_control_flags flags;
    struct g_pdcp_sec_params sec_params;
    void *cb_arg; /*for asynchronous response*/
    g_pdcp_add_context_resp_cbfn  add_cb_fn;
    g_pdcp_pkt_process_resp_cbfn pkt_cb_fn;
    void *ctxt_handle;
};

struct g_pdcp_sec_la_add_outargs {
	int32_t result; /* Non zero value: Success, Otherwise failure */
	struct g_pdcp_sec_handle handle;
}

typedef void(*g_pdcp_del_context_resp_cbfn)(void *cb_arg, struct g_pdcp_la_sec_del_outargs
);
- The callback function is used to pass response for the PDCP delete command (asynchronous mode) from Backend.

struct g_pdcp_la_sec_del_inargs
{
	enum g_pdcp_la_control_flags flags;
	struct g_pdcp_sec_handle handle; /* SA Handle */
	void *cb_arg; /*For Asynchronous response*/
	g_pdcp_del_context_resp_cbfn resp_fn; /* For Asynchronous response */
};

struct g_pdcp_la_sec_del_outargs
{
	int32_t result; 
};

struct g_pdcp_sec_stats {
	uint64_t packets_processed;	/* Number of packets processed */
	uint64_t bytes_processed; 	/* Number of bytes processed */
uint32_t no_tail_room; /* Number of packets with no tail room required for padding */
uint32_t submit_to_accl_failed; /* Number of packets where submission to underlying hardware accelerator failed */
uint32_t auth_failures;
}



typedef void(*g_pdcp_get_sec_resp_cbfn)(void *cb_arg, struct  g_pdcp_la_sec_get_outargs);
- The callback function is used to pass response for the PDCP GET command (asynchronous mode) from Backend.

struct  g_pdcp_la_sec_get_outargs {
{
	int32_t result; /* 0: Success: Non zero value: Error code indicating failure */
	int32_t num_out; /*Number of output records*/
	struct g_pdcp_sec_patams *params; /* An array of params[] to hold ‘num_out’ information */
	struct g_pdcp_sec_stats *stats; /* An array of stats[] to hold the statistics */
	g_pdcp_sec_handle *handle; /* handle returned to be used for subsequent Get Next N call */
};

struct g_pdcp_la_sec_get_inargs
{
enum g_pdcp_la_control_flags flags;
	struct g_pdcp_sec_handle *handle; /* Field is not applicable for get_first */
	enum g_pdcp_la_sec_get_op operation; /* Get First, Next or Exact */
      	struct g_pdcp_sec_params sec_params;
	void *cb_arg; /*For Asynchronous response*/
	g_pdcp_get_sec_resp_cbfn resp_fn; /* For Asynchronous response */
	uint32_t num; /* Number of contexts to read */
	uint32_t get_flags; /* flags indicate to get complete information or only Statistics */
}

struct g_pdcp_la_process_packet_inargs {
    enum g_pdcp_la_control_flags flags;
    struct g_pdcp_sec_handle handle; /* SA Handle */
    uint32_t n_in_bufs;
    uint32_t n_out_bufs;
    uint32_t pdcp_count;
    void *inbuf;    /* Chain of input buffers */
    void *outbuf;   /* Chain of output buffers */
    void *pkt_opaque;
};










typedef void (*g_pdcp_la_instance_broken_cbk_fn)(struct g_pdcp_la_handle *handle, void *cb_arg);

The above application registered callback function will be invoked, when underlying accelerator instance to which the handle is attached is removed.


struct g_pdcp_la_open_inargs {
uint16_t pci_vendor_id; 
uint16_t device_id; 
char *app_identity; /* Application identity */ 
g_pdcp_la_instance_broken_cbk_fn,	/* Callback function to be
called when the connection to the underlying accelerator is broken */ 
void *cb_arg; /* Callback argument */
int32_t cb_arg_len; /* Callback argument length */ 
};


NXP Semiconductor		10

[image: C:\Users\b46481\Desktop\logos\NXP-Logo.png]
image1.png




image2.jpeg




image3.jpeg




image3.emf

image4.png




