
[bookmark: h.ad5yhj1elvrw][bookmark: _Toc437952434]OPNFV DPACC Requirements

 WIKI is here: https://wiki.opnfv.org/dpacc/dpacc_work_item_framework_arc

Contents
OPNFV DPACC Requirements	1
1.	Definitions	2
3.	Business requirements	3
4.	DPACC High Level Requirements	3
5.	Portability requirements	3
6.	Open Source requirements	5
7.	g-API: High Level Requirements	6
8.	legacy-API: High Level Requirements	7
9.	SIO: High Level Requirements	8
10.	HIO: High Level Requirements	8
11.	Best Known Methods and Guidelines	8
12.	Performance Metrics and Verification	9
13.	History	10

1. [bookmark: _Toc437952435]Definitions
	Accelerator
	Any software or hardware design able to accelerate packet processing over the current standard designs

	Application Binary Interface (ABI)
	
An ABI (Application Binary Interface) is the set of runtime interfaces exposed by a library. It is similar to an API (Application Programming Interface) but is the result of compilation. It is also effectively cloned when applications link to dynamic libraries. That is to say when an application is compiled to link against dynamic libraries, it is assumed that the ABI remains constant between the time the application is compiled/linked, and the time that it runs. Therefore, in the case of dynamic linking, it is critical that an ABI is preserved, or (when modified), done in such a way that the application is unable to behave improperly or in an unexpected fashion.
Here is the link to DPDK ABI text: http://dpdk.org/browse/dpdk/tree/doc/guides/contributing/versioning.rst

2. References
 WIKI is here: https://wiki.opnfv.org/dpacc/dpacc_work_item_framework_arc

3. [bookmark: _Toc437952436]Business requirements
	BR-001
	DPACC MUST be targeted at driving open-source implementation of a generic acceleration framework for NFV acceleration

	BR-002
	SHOULD ensure VNF vendors can leverage all accelerators exposed by the NFVI in a hardware independent way

	BR-003
	SHOULD allow a NFVI operator to install a hardware or software accelerator not known at build time (Hot plug support)	Comment by Bob Monkman: Ok..done

4. [bookmark: _Toc437952437]DPACC High Level Requirements
	HLR-001
	(application portability) MUST provide portability for the applications	Comment by Rooke, Michael (Nokia - FI/Espoo): What feature do we want to support in the API that enables a particular type of portability?

	HLR-002
	SHOULD support binary portability of VNF VMs within the same instruction set architecture(Rob to Update)

	HLR-002a
	SHOULD provide a versioned ABI so that VNFs can leverage any acceleration under that ABI version without need to recompile and revalidate the VNF.

Note that VNFs including platform specific drivers should also be supported (with orchestration directing the VNF to a platform with the required features). There is an engineering trade-off between binary portability and performance from translating to/from an ABI standard.

	[bookmark: _GoBack]HLR-003
	MUST have a API ABI requirement to track API/structure changes	Comment by Bob Monkman: This one (ABI) needs to be discussed for clarification. Impact is unknown	Comment by Keith Wiles: The ABI will fix the arguments and location in the API, plus any external structures will also be fix in size and location of members to the structures.

	HLR-004
	MUST preserve ABI if dynamically linked (when modified), done in such a way that the application is unable to behave improperly or in an unexpected fashion.

	HLR-005
	(scalability) SHOULD support multiprocessing. E.g utilisation of multiple processor cores.

	HLR-006
	(compatibility) MUST support legacy VNFs	Comment by Bob Monkman: This is where we left off. 12Oct

	HLR-006a
	Must not impact the compatibility of legacy VNFs of the same architecture, (i.e. NFs running in the guest kenel/userspace.

5. [bookmark: _Toc437952438]Portability requirements
	
POR-001
	MUST support Linux systems in Host and Guest

	POR-001a
	MUST follow the supported Linux OS platform in OPNFV releases

	POR-001b
	Should be OS agnostic
Editors Note: Contradiction to POR-001

	POR-001c
	MUST follow the supported virtualization solutions in OPNFV releases

	POR-001d
	Should be virtualization-technique agnostic

	POR-002
	SHOULD NOT expose the guest OS as part of the APIs	Comment by Rooke, Michael (Nokia - FI/Espoo): Negative requirement, its better to define what something should be doing rather than what it should not. -= a limited set of API calls ? of which none of those expose guest OS features?
Note: Issues in implementations can be reported and scheduled for resolution

	POR-003
	MUST be CPU Architecture agnostic
e.g ARM, IBM Power, MIPS and IA etc.

	POR-004
	MUST be agnostic to CPU and system architectures
e.g CPU + External NIC or Integrated SoC etc.

	POR-005
	MUST be I/O architecture agnostic
e.g MUST support PCI and non-PCI device configurations

	POR-006
	MUST allow for different programming models,
 e.g. Event model, run-to-completion, etc.

6. [bookmark: _Toc437952439]Open Source requirements
	
OSR-001
	MUST be written in a portable language
e.g 'C' is the most common language and can be access from most other languages

	OSR-002
	MUST upstream any changes to the Linux Kernel	Comment by Rooke, Michael (Nokia - FI/Espoo): OSS working practice issue?	Comment by Bob Monkman: This is not an API requirement. Do we need this?

	OSR-003
	The DPACC implementation MUST be independent of non-upstreamed kernel modules or kernel modifications for the platform independent core DPACC implementation
a.

	OSR-003a
	Any critical kernel modules must be upstreamed into Linux unless an optional module is used. All modules MUST be open sourced if required for the platform-independent core of the DPACC implementations..

	OSR-003b
	For avoidance of doubt, platform-specific software and firmware including SoC/CPU/NIC firmware, drivers, etc., which plug into common API layers or glue code, need not be published in source code form to be used in conjunction with DPACC contributed API or glue code.
Editors Note: Rewrite to requirement or move to best practice section.

	OSR-004
	MUST document DPACC API and open source code with Doxygen.

	OSR-004a
	Doxygen is the best known method for documenting open source code and MUST be used for all function headers, structures, structure member, macros and file headers to help in maintaining the code along with helping everyone to understand the code.

	OSR-004b
	Conditional OSR-004a Only applies to all open source code given to the DPACC project and not for private implementations.

	OSR-004c
	Documentation MUST clearly differentiate between public API and private definitions.
Editor: Added “Documentation”

7. [bookmark: _Toc437952440]g-API: High Level Requirements

Introduction

The following g-API is for the application portability and not specific to a specific software acceleration layer design.

	G-001
	g-API MUST support multiple vendors and implementations at the same time to prevent vendor lock-in by hiding implementation details from the applications	Comment by Mike Rooke: Moved to working process related

	G-001a
	Data exchanged via g-API MUST be generic and the underlying routines MAY need to convert it into a hardware specifihc format)	Comment by Bob Monkman: This used to say that abstract data types must be used (or was it should). Now it has been changed to essentially eliminate the requirement. I would like to see this returned to at least Should support abstract data types- simpler, still optional if that is what is desired. Our position is, it _should_ be there to allow direct HW mapping for DP acceleration, which is the key goal of DPACC

	G-001b
	g-API MAY provide abstract or non-abstract data types if required, the goal is to make the g-API usable by the VNF application only not to favor a specific s-API design.
Editors Note: Contradicting, clarify.

	G-001c
	g-API MAY provide accessor functions to simplify data access, but is not required to provide these types of APIs in favor of a specific s-API design

	G-002
	MUST allow for deterministic execution and the best performance of the underlying Acceleration Core	Comment by Rooke, Michael (Nokia - FI/Espoo): “Best performance” how is this measured? How do we know when the requirement is fulfilled?

	G-002a
	g-API MUST not introduce an undue overhead over native AC implementations, as measured with representative examples. The suggestion is less than 2% overhead.

	G-002b
	g-API should not exclude underlying s-APIs from being accessible

	G-003
	g-API SHOULD (only) expose API operations that are useful to the end application(s) and widely supported across different underlying hardware and software implementations.	Comment by Rooke, Michael (Nokia - FI/Espoo): Define exactly what to expose otherwise this is a design principle not requirement.
Editors Note: If we are responsible for writing the spec then we indicate which operations are exposed = “useful”, thus this text should be removed.

	G-003a
	g-API should define the behaviour of API calls to be sufficiently generic and flexible to accommodate a reasonable range of hardware and software implementations	Comment by Rooke, Michael (Nokia - FI/Espoo): Move to design principles or working best practice section.

	G-004
	gAPI SHOULD (only) expose API operations that are useful to the end application(s) and widely supported across different underlying hardware and software implementations.	Comment by Rooke, Michael (Nokia - FI/Espoo): Define exactly what to expose otherwise this is a design principle not requirement.

	G-004a
	g-API should define the behaviour of API calls to be sufficiently generic and flexible to accommodate a reasonable range of hardware and software implementations	Comment by Rooke, Michael (Nokia - FI/Espoo): Move to design principles or working best practice section.

	G-005
	gAPI SHOULD allow an application to query availability of a feature, where appropriate to support portability.

	G-006
	g-API SHOULD define all possible errors cases are strictly defined and there’s no room for “unspecified” behavior unless performance is affected	Comment by Bob Monkman: 10Dec this is where we left off
Note: The intent is NOT to make a bulletproof API with extensive parameter checking, but to clearly define semantics of an API call	Comment by Rooke, Michael (Nokia - FI/Espoo): Negative requirement, list the minimum set of semantics required for the API call.
1. e.g. in documentation, naming of API calls, doxygen etc.
2. This conflicts with the performance goals stated in numerous earlier points. You cannot have precisely specified portable error behavior with arbitrary ill-formed parameters unless the API implementations do extensive run-time parameter checking. This point needs to be clarified. Keith:I believe Ola added this statement, but not sure, I updated it to SHOULD and added the performance point.
3. 9.1 and 9.1.1 clarify that there is not a blanket requirement for run-time parameter checking since it may be necessary to make performance trade-offs.(Please add your name to the list with the correct color highlight, as I do not know who this is here. Thanks)

8. [bookmark: _Toc437952441]legacy-API: High Level Requirements
API is for legacy applications portability

	
L-001
	MUST NOT require any changes or prevent usage of these APIs	Comment by Rooke, Michael (Nokia - FI/Espoo): Legacy APIs are in existence with or without G-API. This section is for high level requirements for G-API only.

	L-001a
	SHOULD support a reasonable set of API types sockets, libcrypto, ...	Comment by Rooke, Michael (Nokia - FI/Espoo): Is this for the legacy API or G-API? If its for G-API the “reasonable set” needs expanding to list the minimal set of API types.

	L-001b
	MUST be documented if any differences from the native API

	L-001c
	Should clarify that legacy APIs may not exhibit the same performance characteristics as g-API usage. There is no "free lunch" here. It is expected that applications will, over time, migrate to use g-APIs to obtain best portability and performance. (OK, would this comment be OK to leave in the text then?)

9. [bookmark: _Toc437952442]SIO: High Level Requirements
	
SIO-001
	MUST provide at least one guest to/from host network interface

	SIO-002
	MUST account for security concerns for changes to VirtIO

	SIO-002a
	MUST be backward compatible to older versions of VirtIO(need to pick a version)

	SIO-002b
	Need to address the backward compatibility in the case of Host upgrades and guest VNF not being upgraded this is the normal case.

10. [bookmark: _Toc437952443] HIO: High Level Requirements
	
HIO-001
	MUST allow VirtIO as the fallback if passthru is not present

	HIO-002
	SHOULD support PCI and non-PCI device pass throughs	Comment by Rooke, Michael (Nokia - FI/Espoo): Is this actually two MAY requirements?

	HIO-002a
	MAY? support features like SR-IOV and other pass-through designs	Comment by Rooke, Michael (Nokia - FI/Espoo): MAY

	HIO-003
	MUST have discoverable devices via configuration or able to scan for devices, if pass-through is supported

	HIO-004
	SHOULD support hot pluggable devices or non-direct hardware devices

Note: The goal for hotplug is to allow devices that support the feature to be hotplugged with software support.

	HIO-005
	SHOULD NOT require the guest to support hotplug of devices

Notes:
 g-API: Need to define the application use cases to benchmark the application performance,
· e.g. L3 Forwarding using LPM, IP Fragmentation/Reassemble and in a virtual function application benchmark.
[bookmark: h.bsr5pxl04hb6][bookmark: _Toc437952444]
11.	Best Known Methods and Guidelines
Duplicates here from the original requirements – to edit…

2. g-API MUST support multiple vendors and implementations at the same time to prevent vendor lock-in by hiding implementation details from the applications	Comment by Rooke, Michael (Nokia - FI/Espoo): Is this a working process aspect? How do we mandate a particular (testable) minimum build? that results in multivendor support?
3. Need to use best known methods for portability for code and APIs	Comment by Rooke, Michael (Nokia - FI/Espoo): Contradiction, be agnostic or list the minimal set of CPU architectures DPACC MUST be compliant with.
4. SHOULD NOT require modification to existing applications	Comment by Rooke, Michael (Nokia - FI/Espoo): This is a design principle rather than an API specification. It’s also a negative requirement. Is the requirement for new applications to use the G-API?	Comment by Bob Monkman: I agree with Michael. This negative requirement has nothing to do with defining a g-API. legacy does not change
1. For avoidance of doubt, the g-API may specify new APIs, to maximize portability, but developers are free to use legacy/s-APIs directly, with the understanding that application portability and functionality may be compromised to some degree.
5. g-API SHOULD use software best-practice to decouple applications from software/hardware implementation specific data structures and implementation specific assumptions about the location of data.	Comment by Rooke, Michael (Nokia - FI/Espoo): This is not a requirement its more of a recommended best practice. Should a design principles section hold such requirements?

6. g-API SHOULD provide explicit create/allocate and destroy/free for resources that are intrinsic to data-plane processing
1. e.g. for example: buffers and timers) to allow flexibility of implementation.Lingli: is this one belongs to the group of "handlers"? Shall we move it to the #5, rather than #4.6?
1. All g-API data structures SHOULD be explicitly allocated and freed using the corresponding g-API allocators where required
7. In regards to APIs having general utility across applications and hardware spectrum (g-API #6)
1. If a given functionality is not supported by the underlying design then the design should return NOT SUPPORTED as an error.
1. Design guideline: Requiring a design to implement a functionality which can not be supported or is hardware supported is not reasonable and the design should be able to return not supported.	Comment by Rooke, Michael (Nokia - FI/Espoo): ?? Design principle not requirement. If it’s a requirement it must be testable.
2. Optional APIs and features simply promote fragmentation, which goes against the portability goals. gAPI should avoid optional features (at least for the first few releases).	Comment by Rooke, Michael (Nokia - FI/Espoo): Nice to know but this is not a requirement.
1. Note that this does not imply that every API will exhibit the same performance characteristics across every implementation. It should be assumed that there will be platform-specific variances in this area, however the goal should be that APIs should be efficiently implementable across all platforms.	Comment by Rooke, Michael (Nokia - FI/Espoo): Design principle
8. g-API must clearly define in documentation the behaviour of API calls	Comment by Rooke, Michael (Nokia - FI/Espoo): This is a working process issue on the DPACC team not a requirement to the API.
1. Including success/error cases with consideration of performance across multiple possible implementations
1. e.g. Queue enqueue operation: “success” would indicate that the item was placed in the queue, but no guarantees that the receiver will ever process it (the receiver may crash and queue be destroyed before item is processed)
9.

12. [bookmark: h.2e85o0a1rp15][bookmark: _Toc437952445] Performance Metrics and Verification
<capture the performance metrics here>

13. [bookmark: _Toc437952446] History	
	15th December 2015
	Initial draft from google docs version dated 14th December 2015.

	
	

14. Editors

Keith Wiles
Bob Monkman
Michael Rooke
Bill Fischofer

15. Contributors:
Francois-Frederic Ozog
Josh Fender
Rob Dimond
Srinivasa Addepalli
Bob Monkman
Argy Krikelis
Bill Fischofer
Lingli Deng
Ola Liljedahl
Michael Rooke

