[image:]
Freescale Semiconductor	
Authors: Subhashini Venkataramanan, Srini Addepalli	3/2015

Acceleration Interface for VNFs – IPsec and Packet Processor Use Case

Revision History

	Date
	Version
	Author
	Reason

	03/05/2015
	1
	Freescale Semiconductor
	Initial version

	09/11/2015
	2
	Freescale Semiconductor
	Including Virtio-IPsec requirements, APIs and Messages

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents
Table of Contents	3
1	Need Description	4
2	References	5
3	Classification	5
3.1	Acceleration Models	5
3.1.1	Look Aside Model	5
3.1.2	Offload Model	5
4	Virtio based Accelerators	6
4.1	Look aside Accelerator	6
4.1.1	Look aside Functions	7
4.1.2	IPsec Packet Processing – Look Aside Accelerator Packet Flow	8
4.1.3	IPsec Packet Processing - NFVI Packet Processing Accelerator	9
4.2	Offload Accelerators	11
4.2.1	Offload Functions	12
4.2.2	IPsec Packet Processing - NFVI and IPsec Offload Accelerator	13
5	Performance Benefits	14
6	Management & Orchestration Requirements	15
7	Possible Accelerators	15
8	Live migration Consideration	15

[bookmark: _Toc430078699]Need Description
With NFVI (Network Functions Virtualization Infrastructure), Virtual Network Functions (VNFs) run as software-only entities in a hardware agnostic fashion. Examples of VNF range from
· Switching, Routing
· CDNs
· Security application such as Firewall, Intrusion Prevention systems, Virus and SPAM Protection Systems, IPsec and SSL-VPN gateways.
· eNodeB
· EPC SGW, PGW

While a range of VNFs may work efficiently as software-only entities, several of the VNFs such as IPS (Intrusion Detection and Prevention Systems), WAF (Web Application Firewalls that do virus scanning and spam protection), IPsec/SSL-VPN Gateways, LTE requiring Packet Data Convergence Protocol (PDCP) processing and VoIP (Voice over IP) Gateways do compute intensive algorithmic operations that takes away cycles off the VNFs. Achieving high performance for the above mentioned collective umbrella of Compute Intensive applications (CI) is a known challenge when run as VNFs.
Different CI VNFs require specific type of offload accelerators. The table below cites some examples of CI VNFs and the accelerators that they will need.
	
	VNF Application
	Offload Accelerator Capabilities

	1
	IPsec/SSL Gateway
	Symmetric Key Cryptography, Public Key Cryptography
IPsec Protocol Accelerators, SSL Record Layer Accelerators

	2
	Intrusion Prevention Systems
	Pattern matching, compression, decompression

	3
	Web Application Firewall, Anti-Virus, Anti-Spam Systems
	Compression, decompression, pattern matching, SSL Record Layer Processing, Public and Symmetric Cryptography.

	4
	Packet Data Convergence Protocol
	Crypto engines
Protocol Acceleration

	5
	VOIP Gateway
	Crypto engines
SRTP Protocol Acceleration

	6
	Routing, Firewall
	Table lookup Accelerators

The CI applications that run on propriety complex hardware-based physical appliances showcase higher performance as the compute intensive algorithmic operations (e.g. cryptography, compression/decompression, pattern matching) are offloaded to the hardware accelerators of SoCs. The major stumbling block in providing hardware acceleration for these CIs as VNFs is that the hardware accelerators available today have proprietary vendor specific interfaces that defeat the basic goal of NFV that envisages VNFs to be run as a software-only entity in a hardware agnostic fashion.
Keeping the requirement of VNF to achieve high performance virtualized network appliances which are portable between different hardware vendors, it becomes imperative to define a standard vendor independent accelerator interface, Virtual Accelerator Interface, so that VNFs shall continue to exist as software-only entities and work in a hardware agnostic fashion and yet address the performance challenges for the CI applications as VNFs.
In summary, the problem statement is as follows:
· CI VNFs are unable to showcase high performances as traditional CIs as they run as software-only entities. Using accelerators is one method with which CI VNFs can showcase higher performance as their traditional counter-parts.

· CI VNFs are unable to make use of hardware accelerators as they have proprietary vendor-specific interfaces and using such proprietary interfaces defeats the portability and migration requirements of VNFs across various ecosystems.
[bookmark: _Toc413347209][bookmark: _Toc430078700]References
Virtio Specifications http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.pdf
[bookmark: _Toc430078701]Classification
[bookmark: _Toc430078702]Acceleration Models
There are multiple criteria based on which accelerators can be classified. One criteria used for classification depends on amount of packet processing done on the VNF and the hardware accelerator. Based on this criteria, accelerators can be classified into Look aside accelerators and Offload accelerators.
[bookmark: _Toc430078703]Look Aside Model
In this model, the VNF application processes some amount of packet processing by itself before making use of an available accelerator to do some aspects of the packet processing
Accelerator Functions
There can be several examples of lookaside accelerator functions such as Crypto, IPsec-header processing, SSL-Header processing, PME (Pattern Matching) and so on.
[bookmark: _Toc430078704]Offload Model
In this model, the VNF application typically pushes all the states to the offload accelerator and allows the accelerator to perform the packet processing in an autonomous fashion. This model is also referred to as cut-through model. In this case the VNF application expects to process few packets such as exception packets.
Accelerator Functions
Examples of offload accelerator functions include Firewall, SLB, NAT, IPsec etc.
[bookmark: _Toc430078705]Virtio based Accelerators
[bookmark: _Toc430078706]Look aside Accelerator
[image:]
Figure 1 Virtio Look aside Interface for Accelerator
Figure 1 shows a suggested implementation of standardized accelerator available for VNFs using Virtio . Under the Virtio-lookaside model (umbrella of drivers), VNF can access several look aside accelerator functions such as IPsec, Crypto, PME, DCE etc.
[bookmark: _Toc430078707]Look aside Functions
[image:]
Figure 2: Standardized Look aside Accelerator Interface using virt-io drivers
Figure 2 shows Virtio-lookaside function specific drivers enabling a VNF to access underlying hardware accelerators in a hardware agnostic fashion.
Several Virtio-accelerator function drivers (LA or Look Aside model) are shown in the picture – namely Virtio LA Crypto (for Crypto operations), Virtio LA IPsec (for IPsec level acceleration), Virtio LA SSL (for SSL level operations), and Virtio LA PME for pattern matching acceleration and Virtio LA DCE for compression, de-compression operations.
The backend would include vendor specific translators that translate the generic virtio messages to vendor specific messages, hence enabling the VNFs access to the underlying accelerators
[bookmark: _Toc413347211][bookmark: _Toc430078708]IPsec Packet Processing – Look Aside Accelerator Packet Flow
[image:]
Figure 3 IPsec Packet Processing –Look Aside Accelerator Flow
Figure 4 shows the flow of packets when IPsec Look aside accelerator is used. F1, F2 stand for several packet processing functions such as Firewall, NAT etc.
Ingress Packet Flow:
· Packets processed by VXLAN/VLAN, OVS Data Path, IP Tables, Vhost-Net
· Packet announced to VNF through Virtio-Net driver
· Packets under several function processing such as Firewall etc.
· Packets arrive at the IPsec module for IPsec Packet Processing
· As packets are submitted by the IPsec Module to the Virtio-IPsec front end driver, the buffers are put in the Virtio Descriptor Vrings or Virt Qs to be transferred to the Virtio-IPsec Backend.
· The Virtio IPSec Backend is responsible for translating the packets from Virt Q Descriptor to the actual hardware accelerator in a message that the accelerator understands and vice-versa.
· The Virtio IPsec Backend is also responsible for picking up processed packets from the hardware accelerator, updating the VirtQ rings and notifying the Guest VNF.
· The processed packets under further processing functions (F2 etc.) before being sent out through the Virtio interface.
[bookmark: _Toc413347212][bookmark: _Toc430078709][bookmark: _Toc413347213]IPsec Packet Processing - NFVI Packet Processing Accelerator
[image:]
Figure 4 NFVI Packet Processing Accelerator
Figure 5 shows the packet flow for a NFVI Packet Processing Accelerator. The packet flow in this case is as follows:
· VXLAN/VLAN, OVS Data Plane, IP Tables processing happens in the Intelligent NIC (iNIC). The Vhost-PCI backend presents the packets to the VNF using the Virtio-net interface
· Packets that need to be transmitted out are submitted through the Virtio-Interface. The Vhost-PCI backend handles the packet, does the necessary processing before sending the packet out.

[bookmark: _Toc413347214]Combined NFVI Packet Processing with IPsec Look Aside Accelerator
[image:]
Figure 5 Combined NFVI Packet Processing with IPsec Look Aside Accelerator
Figure 6 shows the packet flow of a combined case of NFVI Acceleration and IPSec Look Aside Acceleration.

[bookmark: _Toc430078710]Offload Accelerators
[image:]
Figure 3 Virtio Offload Interface for Accelerator
 Figure-3 shows the Offload accelerator interface. Under the Virtio-offload model (umbrella of drivers), the VNF can access several offload functions such as Firewall Offload function, SLB-NAT Offload function, IPSec offload function etc.
VNF applications in the Guest User space can make use of the SAL interface implementing Virtio-Accelerator specific frontend drivers to access the underlying hardware accelerator. VNF Applications residing the Guest Kernel space can make use of the virtio frontend driver in the kernel level to access the underlying hardware accelerator.
[bookmark: _Toc430078711]Offload Functions

[image:]
Figure 4 Virtual Accelerator Interface for Offload Model
Figure 4 shows a suggested implementation of standardized offload model interfaces available to VNFs using Virt-IO drivers.
Several virtio-offload function drivers are shown in the picture – namely Virtio Firewall flow programming, Virtio IPsec Flow Programming, Virtio NAT flow programming etc.
The backend would include vendor specific translators that translate the generic virtio messages to vendor specific messages, hence enabling the VNFs access to the underlying accelerators.
[bookmark: _Toc413346564][bookmark: _Toc413346565][bookmark: _Toc413347215][bookmark: _Toc430078712]IPsec Packet Processing - NFVI and IPsec Offload Accelerator
Complete Offload – Packet flow
[image:]
Figure 7 NFVI IPsec Packet Processing Accelerator – Offload Data Path Flow
Figure 7 shows the packet flow, where the VNF is able to set up flow programming in the iNIC to apply IPsec Processing on specific flows. As a result of this, for packets matching the programmed flows, packet processing happens in the iNIC itself.
Inline Offload – Packet flow
[image:]
Figure 6 NFVI and IPsec Packet Processing Accelerator – WAF Flow (Inline offload)
Figure 8 shows the packet flow, in the case, where the packets have to be processed by the VNF e.g. TCP port 80 traffic. In this case, part of the packet processing happens in the iNIC as part of the offload operation, namely F1 processing and IPsec processing (Inbound processing or decryption). The packets are then sent to the VNF through the Virtio-net frontend to the F3 (WAF) for processing. Subsequent to processing by F3, the packets are sent via Virtio-net Frontend for subsequent processing (Outbound IPsec processing) and F2 before being sent out.
[bookmark: _Toc413347216][bookmark: _Toc430078713]Performance Benefits
· NFV Accelerator Offload using hardware accelerators can reduce significant compute cycles utilization by the VNFs leaving more for other tasks of VNF and hence result in a capacity gain, throughput gain, connection rate gain or some combination of the above for the VNF.
· Avoiding Virtualization Layer interaction on a per packet basis would bring significant performance gain and, hence it is important to consider methods to bypass the Virtualization layer on a per packet basis.
[bookmark: _Toc413347217][bookmark: _Toc430078714]Management & Orchestration Requirements
Orchestrator shall match VNF’s accelerator’s requirements with NFVI’s accelerator capabilities. Some of the requirements are:
· Compute nodes shall advertise the accelerators it has, number of virtual entities accelerator can support, performance of the accelerators.
· Compute nodes shall periodically advertise the virtual accelerators and current bandwidth of accelerators.
· VNF images indicate the type of accelerators it can take advantage of.
· Orchestrator choosing the right compute node while instantiating the vNF.
· Orchestrator informing the compute node that is chosen to bring up the vNF with information on which accelerators are to be instantiated.
· Compute node to instantiate the accelerators and attaching them to the vNF that is being brought up.
[bookmark: _Toc413347218][bookmark: _Toc430078715]Possible Accelerators
Crypto – Public key and Symmetric Key, IPsec Protocol Accelerator, SSL Record Layer Accelerators, Pattern Matching, Compression, De-compression, PDCP Accelerator, SRTP Protocol Accelerator and Table Lookup Accelerators
[bookmark: _Toc413347219][bookmark: _Toc430078716]Live migration Consideration
· When VNFs move from one NFVI node to another, the VNF function should continue to work with minimal disruption.

Freescale Semiconductor		16

image2.png
SAL API

App || App Frontend Driver

— Viftio | Virtio
Virtio LA LA LA

S PME | DCE

TCP/IP Kernel Space

Frontend Driver

Virtio LA Vli_l'/l\iﬂ erRu
Crypto PME | DCE

Backend Driver/Proxy

IVRing
Virtio Virtio
LA LA
Crypto SEC
lendor
Hiw
Ring!

QEMU

TCP/IP

LA — Look Asi
ook Aside LOOKASIDE ACCELERATOR

Vendor Specific
Translators SEC PME Compression

image3.png
IPsec Packet Processing — Look Aside Accelerator Flow

VNF
F1, F2 — functions such
as Firewall, NAT etc.
. I F2 = |ngress/Egress
D Virtio-IPsec Path
Virtio-net Frontend Virtio-net = |Psec Path
Frontend Frontend
VRING
Transport Host Linux User
Virtio-IPsec
Backend QEMU
VHOST-NET Host Linux Kernel
IP Tables
OVS DP KVM
VLAN/VXLAN
Driver
Hardware
IPsec
Accelerator

Hardware

image4.png
NFVI Packet Processing Accelerator

VNF
F1,F2 -
- '| F2 functions such
as Firewall, NAT
Virtio-net Virtio-net etc.
Frontend Frontend

I VRING [

Transport Host Linux User
Virtio
Vhost-PClI
Setup

QEMU

Host Linux Kernel

KVM

iNIC Hardware

VHOST-PCI

= |ngress/Egress
Path
== |Psec Path

iNIC — —iNIC or

Inbuilt Advanced

| Offload Engine

image5.png
Combined NFVI Packet Processing with IPsec Look Aside
Accelerator

F1, F2 — functions

VNF
such as Firewall,
NAT etc.
F1 IPsec F2 = |ngress/Egress
Path
V'rt't : i == |Psec Path
irtio-ne ontend Virtio-net
Frontend Frontond iNIC — = iNIC or
Inbuilt Advanced
VRING [Offload Engine
Transport Host Linux User
o-IPse
Backend QEMU
Host Linux Kernel Virtio
KVM VhostPcl i
Setup

VHOST-PCI

IP Tables

VLAN/VXLAN
Driver

|
[_ovsor |

IPsec
Accelerator
Hardware

Hardware

image6.png
SAL API

Frontend Driver

Virtio
Offload

TCP/IP Kernel Space

Frontend Driver
Virtio
Offload

Backend Driver/Proxy

VRing -

Virio Virtio
Offload Offload Host Linux User

Vendor
H/w Rings

TCP/IP

ACCELERATOR

Custom Drivers

Offload Offload
. accelerator accelerator

image7.png
App || App

SAL API

Frontend Driver

Virtio Offload F1
FP

TCP/IP

Virtio Offload
Firewall FP

Frontend Driver

Virtio Offload
IPSec FP

Virtio Offload
NAT FP

Kernel Space

Virtio
Firewal

Backend Driver/Proxy

FP — Flow Programming
Vendor Specific

Translators

TCP/IP

App

Host Linux User

iNIC/FPGA/AIOP

Firewall FP

IPsec FP

NAT FP

image8.png
NFVI and IPsec Packet Processing Accelerator

F1, F2 — functions such

VNF F3e.g. as Firewall, NAT etc.
WAF = Ingress/Egress
IPsec F2 Path
— iNIC —iNIC or Inbuilt
Virtio F1 FP Virtio-IPsec FP Virtio F2 FP Advanced Offload
Frontend Frontend Frontend Engine
__ FP — Flow
Virtio-net Virtio-net i
Frontend Frontend Programming
VRING
Host Linux User
Transport Virtio-IPsec
FP Backend
Virtio VHOST-
Virtio F1 FP QEMU I IOpc|
Backend Setup

KVM

Host Linux Kernel

Virtio F2 FP
Backend

IPsec
Accelerator

IP Tables

r
T ovsor |

VLAN/VXLAN
Driver

iNIC/FPGA/AIOP

Hardware

image9.png
NFVI and IPsec Packet Processing Accelerator (Inline Offload flow)

VNF F3e.g.
WAF

Virtio F1 FP Virtio F2
Frontend Frontend FP
Virtio-net Virtio-net
Frontend Frontend
S————
VRING

Transport Virtio IPsec Host Linux User
FP Backend
— Virtio
VIO (37 QEMU VHOST-PCI
Backend Setup
Host Linux Kernel Virtio F2 FP
KVM Backend

VHOST-PCI iNIC/FPGA/AIOP Hardware

IPsec Accelerator

F1, F2 — functions such as
Firewall, NAT etc.

= Ingress/Egress
Path

iNIC — iNIC or Inbuilt
Advanced Offload Engine
FP — Flow Programming

image1.png
SAL API

Frontend Driver

Virtio
Look-aside

TCP/IP Kernel Space

Frontend Driver

Virtio
Look-aside

Backend Driver/Proxy

VRing -

Virtio Virtio
Lookaside Lookaside

Vendor
H/w Rings

TCP/IP

. ACCEL TOR
Custom Drivers Lookaside Lookaside

. accelerator accelerator

image10.emf

