
Swimming upstream – Dave Neary1

Swimming
Upstream

Dave Neary, Red Hat
dneary@redhat.com

@nearyd

Swimming upstream – Dave Neary2

Why bother?

OPENSHIFT

Open source is everywhere!

Ganeti

80% as good
as the last guy needed it to be

David Schlessinger

Swimming upstream – Dave Neary5

Building on open source projects

Swimming upstream – Dave Neary6

Branching strategy

1. I branch, and do what I want

Community development
(mainline)

Branch
point Vendor branch

"Unleveraged potential"

Swimming upstream – Dave Neary7

Branching strategy

Cost: Work on vendor branch
Opportunity cost of upstream work

Community development
(mainline)

Branch
point Vendor branch

"Unleveraged potential"

Swimming upstream – Dave Neary8

Branching strategy

2. Branch and rebase

Community development
(mainline)

Branch
point Vendor branch

Merge
point

Cost
of

merge

Swimming upstream – Dave Neary9

Branching strategy

...and rebase and rebase and...

Community development
(mainline)

Vendor branch
Merge points

Swimming upstream – Dave Neary10

Branching strategy

Cost: Vendor work + cost of
repeated merging (maintenance)

Community development
(mainline)

Vendor branch
Merge points

Swimming upstream – Dave Neary11

Branching strategy

3. Branch, rebase, and upstream

Community development
(mainline)

Branch
point Vendor branch

Merge
point

Cost
of

merge

Propose
patches
upstream

Swimming upstream – Dave Neary12

Branching strategy

Cost: Vendor work + cost of
merge + “community overhead”

Community development
(mainline)

Branch
point Vendor branch

Merge
point

Cost
of

merge

Propose
patches
upstream

Swimming upstream – Dave Neary13

“Community overhead”?

Our communities expect lots of
things which companies would
not otherwise do

Swimming upstream – Dave Neary14

Standard branching

Swimming upstream – Dave Neary15

Vendors want to build on a stable base

Swimming upstream – Dave Neary16

Community wants patches to trunk

Swimming upstream – Dave Neary17

Case study: Wakelocks

2005: Google acquires Android

2009: Arve Hjønnevåg proposes
Wakelocks for inclusion in kernel

Initial proposal rejected, with
comments

2009: Several updates also
rejected

Debate dies down for a year

2010: Wakelocks and alternative
“autosleep” from Rafael Wyszocki
“debated”* on LKML

* >1500 email thread

Autosleep patches merged,
wakelocks still outside kernel

Android team members have spent literally hundreds of
man hours (my mail folder on the suspend blocker thread
has over 1500 mail messages, and is nearly 10MB), and
have tried rewriting the patches several times, in an
attempt to make them be main-line acceptable.

Aug 2010, Theodore T'so

DiBona said there were some developers at Google
working on it who “feel burned” by the decision but he
acknowledged that the “staffing, attitute and culture” at
Google isn’t sufficient to support the kernel crew.

Apr 2010, Paula Rooney, ZDNet

“Getting code into the kernel is always
easier if you have a recognised name
associated with it”

Matthew Garrett, LinuxCon 2010

Swimming upstream – Dave Neary25

“Do NOT fall into the trap of adding
more and more stuff to an out-of-
tree project. It just makes it harder
and harder to get it merged. There
are many examples of this.”

Andrew Morton

Ideal situation

This is what upstream does

Difficulties

● Hard to sync product & project release dates
and features

● Building a castle on quicksand
● Basically 1.5x to 2x the work up-front

Difficulties

Why is this relevant for OPNFV?

Swimming upstream – Dave Neary30

NFV is not just OpenStack

Swimming upstream – Dave Neary31

Example: SR-IOV support

● Performance: VMs to be allocated an SR-IOV Virtual
Function on capable hosts

● Requires NUMA awareness in Nova, libvirt, QEMU to
ensure VM is on the same NUMA segment as the VF

● Improved SR-IOV support in libvirt (VM placed in same
NUMA node as VF)

● PCI pass-through support for Nova

● User interface and policy enforcement

Virtualized Mobile Base Station
- Multiple RAN technologies from

multiple vendors to be consolidated
on a single BS to improve utilization

- BS virtualization can share resources
among multiple logical RAN nodes
from different systems.

- C-RAN for efficient resource
utilization among different physical
BSs.

- Baseband Unit (BBU) pool with high
performance servers and real-time
processing for signaling capacity

(ETSI #4)

Swimming upstream – Dave Neary33

Example: C-RAN/vRAN

● Determinism
● Real-time patches to KVM

● Performance
● DPDK accelerated Open vSwitch

● Reliability at scale
● HA instances in OpenStack Nova
● HA OpenStack
● Fault management and reporting
● IPv6 support – kernel through Nova, Neutron

Swimming upstream – Dave Neary34

Upstream first

Swimming upstream – Dave Neary35

Upstream first

● Maintaining significant out-of-tree patches across
multiple projects is unsustainable

● Features should be designed, written and proposed
with upstream developers

● Cascading changes across multiple projects require
explanation and advocacy

Swimming upstream – Dave Neary36

Upstream First

● Requires discipline (small changes, discussed first)

● Relationships (your priority might not be their priority)

● Many communities – not just OpenStack!

Swimming upstream – Dave Neary37

Not always easy!

Swimming upstream – Dave Neary38

Steps to success

1. Empathy

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475

Bug: assert(int+100 > int) optimized away

c2: “signed type overflow is undefined by the C standard”
c4: “You have GOT to be kidding? [...] You are missing the
point here. [...] PLEASE REVERT THIS CHANGE. [...] THIS IS
NOT A JOKE. FIX THIS! NOW!”
c5: “I am not joking, the C standard explictly says signed
integer overflow is undefined behavior.”
c9: “Hey Andrew, do you really think this issue goes away if you
keep closing the bugs fast enough?”
...
c48: “Oh wow, another wise cracking newbie who comments
without actually understanding the issue. I AM NOT RELYING
ON UNDEFINED BEHAVIOR.”
...

2. Framing

Moving in

New job

Swimming upstream – Dave Neary45

Start small

● Listen for a while

● Introduce yourself

● Ask questions with an open mind

Swimming upstream – Dave Neary46

Make friends

● Relationships are key

● Learn cultural norms

Swimming upstream – Dave Neary47

3. Mapping the lay of the land

Identify the leader(s)

Case study: OpenDaylight

Swimming upstream – Dave Neary50

OpenDaylight community structure

● http://www.opendaylight.org/community/how-
participate - “Getting started guide, “Developer wiki”

● Technical Steering Committee:
https://wiki.opendaylight.org/view/TSC:Main

● Project meetings: Attend TSC meetings

● Project list:
https://wiki.opendaylight.org/view/Project_list

● Active IRC channel: #opendaylight on Freenode

Swimming upstream – Dave Neary51

Tools to help identify leaders

● Source code analysis:
https://spectrometer.opendaylight.org/

● Mailing list analysis: MLStats:
http://metricsgrimoire.github.io/MailingListStats/

Infrastructure
and

Channels

Swimming upstream – Dave Neary53

Common communication infrastructure

● Mailing lists

● IRC

● Wiki

● Code review

● Source control

One rule:
When in Rome...

Community processes:
When in Rome...

Swimming upstream – Dave Neary55

4. Effecting change

Avoid the
Water
Cooler

Swimming upstream – Dave Neary57

Open and transparent

Do not fear mistakes.
There are none.

Miles Davis

Swimming upstream – Dave Neary59

Communicate the vision

Swimming upstream – Dave Neary60

Break things down

Swimming upstream – Dave Neary61

Showing your work

Optimise
for reading

Rewrite history with
git rebase --interactive

Swimming upstream – Dave Neary63

Rinse, repeat

Keep your eyes
on the prize

Swimming upstream – Dave Neary65

Thank you

Dave Neary, Red Hat
dneary@redhat.com

@nearyd

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Virtualized Mobile Base Station
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

