
QoS Mechanisms
and OVS for NFV

Al Morton

7 March 2016

Outline

• Background

• Two Class Scenario

• Observations so far

• Solutions may involve new mechanisms

• Possible Next Steps

Traditional QoS mechanisms and Example
of QoS Classes

Note: If the resources are sufficient
to handle all traffic, QoS Mechanisms
take little/no action.

Traditional QoS mechanisms and Example
of QoS Classes

Two Class Scenario

• “Real-time” Class requires priority treatment
– But not Strict priority, resources must be shared

• “Default Data” Class can experience less
performance, more impairments

• Each Class is reliably “marked” in one or more
packet/frame headers. Expect variable 4-tuple

• Encapsulation/Tunnels should expose the
markings (possibly mapped to alt code)

• Traffic may originate/terminate on NIC or VM

Observations so far…

• Support for packet classification *early* in the
processing pipeline

• Queue-based mechanisms have limited scope
– OVS processes each packet to completion (?)
– Queue between vSwitch and Guest/VM

• Assuming OpenFlow Control, possible to mark
some flows with higher priority
– But OVS “flattens” many rules into 1 in fastpath
– Possibly requires support in ODL and OS, too

• Does testing indicate there is a (treatable)
problem with the 2 class scenario?

Solutions may involve new
mechanisms: OF control

• OF 1.3+ adds Auxiliary Control Connection
– Parallel to Main Connection (sec 6.3.6)

• For each of two classes, add
– Aux 1 connection for “Real-time” PACKET_IN

– Aux 2 connection for “Default” PACKET_IN

• Switch may process Aux 1 responses with
higher priority than Aux 2

• Controller *could* offer similar policy
– Upstream improvement in ODL, etc.

• But, need *benefits* of such a mechanism

Possible Next Step

• Tests with OVS, OVS+DPDK
– Use multiple flows in each class

– Classes have different packet sizes consistent with
traditional uses:
• “Real-time” has small (~240 byte) packets at 50 pkt/s

• “Default Data” has max MTU packets in one direction, and
TCP ACKs in the other. Streams tend to be bursty with many
MTU size packets back-to-back.

– Check for delay and delay variation on the Real-time
class.

– Note: Bottleneck project tests showed an odd
throughput limitation vs packet size – needs some
more investigation.

Work further at Hackfest?

• Al is attending…

