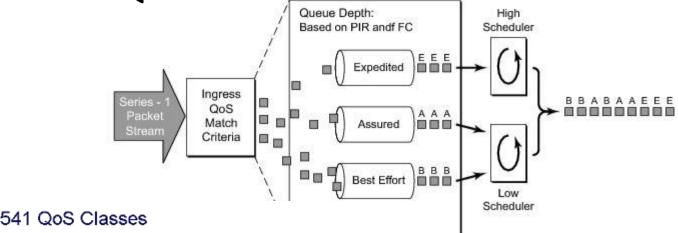

QoS Mechanisms and OVS for NFV

Al Morton 7 March 2016

Outline

- Background
- Two Class Scenario
- Observations so far
- Solutions may involve new mechanisms
- Possible Next Steps


Traditional QoS mechanisms and Example

Note: If the resources are sufficient to handle all traffic, QoS Mechanisms take little/no action.

QCI	Bearer	Priority	Delay	PELR	Examples	
1	8	2	100 ms	10-2	Conversational voice	
2	GBR	4	150 ms	10-3	Conversational video	
3		3	50 ms	10 ⁻³	Real-time games	
4	2	5	300 ms	10-6	Streaming video	
5		1	100 ms	10-6	IMS signalling	
6	Non- GBR	6	300 ms	10 ⁻⁶	Streaming video, web, EMail	
7		7	100 ms	10-3	Voice, video, games	
8	GDIT	8	000	10 ⁻⁶		
9		9	300 ms		Streaming video, web, EMail	

Traditional QoS mechanisms and Example of QoS Classes

ITU-T Y.1541 QoS Classes

Network Performance		Y.1541 QoS Classes							
Parameter	Class 0	Class 1	Class 2	Class 3	Class 4	Class 5	Classes resolve scaling		
IPTD	100ms	400ms	100ms	400ms	1 s	U	issues		
IPDV	50ms	50ms	U	U	U	U			
IPLR	1*10 ⁻³	U							
IPER			1*10-4			U			
Voice Sign	aling	f			Best	Effort Data	Example Service Mappings		
	Interactive [Data			Streaming	mappings			

Note that delay variability is the distinguishing difference between

Two Class Scenario

- "Real-time" Class requires priority treatment
 But not Strict priority, resources must be shared
- "Default Data" Class can experience less performance, more impairments
- Each Class is reliably "marked" in one or more packet/frame headers. Expect variable 4-tuple
- Encapsulation/Tunnels should expose the markings (possibly mapped to alt code)
- Traffic may originate/terminate on NIC or VM

Observations so far...

- Support for packet classification *early* in the processing pipeline
- Queue-based mechanisms have limited scope

 OVS processes each packet to completion (?)
 Queue between vSwitch and Guest/VM
- Assuming OpenFlow Control, possible to mark some flows with higher priority
 - But OVS "flattens" many rules into 1 in fastpath
 - Possibly requires support in ODL and OS, too
- Does testing indicate there is a (treatable) problem with the 2 class scenario?

Solutions may involve new mechanisms: OF control

- OF 1.3+ adds Auxiliary Control Connection
 Parallel to Main Connection (sec 6.3.6)
- For each of two classes, add
 - Aux 1 connection for "Real-time" PACKET_IN
 - Aux 2 connection for "Default" PACKET_IN
- Switch may process Aux 1 responses with higher priority than Aux 2
- Controller *could* offer similar policy

- Upstream improvement in ODL, etc.

But, need *benefits* of such a mechanism

Possible Next Step

- Tests with OVS, OVS+DPDK
 - Use multiple flows in each class
 - Classes have different packet sizes consistent with traditional uses:
 - "Real-time" has small (~240 byte) packets at 50 pkt/s
 - "Default Data" has max MTU packets in one direction, and TCP ACKs in the other. Streams tend to be bursty with many MTU size packets back-to-back.
 - Check for delay and delay variation on the Real-time class.
 - Note: Bottleneck project tests showed an odd throughput limitation vs packet size – needs some more investigation.

Work further at Hackfest?

• Al is attending...