

HA Use Cases

1 Introduction

This use case document outlines the model and failure modes for NFV systems. Its

goal is along with the requirements documents and gap analysis help set context for

engagement with various upstream projects. The OPNFV HA project team

continuously evolving these documents, and in particular this use case document

starting with a set of basic use cases.

2 Basic Use Cases

In this section we review some of the basic use cases related to service high

availability, that is, the availability of the service or function provided by a VNF. The

goal is to understand the different scenarios that need to be considered and the

specific requirements to provide service high availability. More complex use cases

will be discussed in other sections.

With respect to service high availability we need to consider whether a VNF

implementation is statefull or stateless and if it includes or not an HA manager which

handles redundancy. For statefull VNFs we can also distinguish the cases when the

state is maintained inside of the VNF or it is stored in an external shared storage

making the VNF itself virtually stateless.

Managing availability usually implies a fault detection mechanism, which triggers the

actions necessary for fault isolation followed by the recovery from the fault. This

recovery includes two parts:

 the recovery of the service and,

 the repair of the failed entity.

Very often the recovery of the service and the repair actions are perceived to be the

same, for example, restarting a failed application repairs the application, which then

provides the service again. Such a restart may take significant time causing service

outage, for which redundancy is the solution. In cases when the service is protected by

redundancy of the providing entities (e.g. application processes), the service is "failed

over" to the standby or a spare entity, which replaces the failed entity while it is being

repaired. E.g. when an application process providing the service fails, the standby

application process takes over providing the service, while the failed one is restarted.

Such a failover often allows for faster recovery of the service.

We also need to distinguish between the failed and the faulty entities as a fault may or

may not manifest in the entity containing the fault. Faults may propagate, i.e. cause

other entities to fail or misbehave, i.e. an error, which in turn might be detected by a

different failure or error detector entity each of which has its own scope. Similarly, the

managers acting on these detected errors may have a limited scope. E.g. an HA

manager contained in a VNF can only repair entities within the VNF. It cannot repair

a failed VM, in fact due to the layered architecture in the VNF it cannot even know

whether the VM failed, its hosting hypervisor, or the physical host. But its error

detection mechanism will detect the result of such failures - a failure in the VNF - and

the service can be recovered at the VNF level.On the other hand, the failure should be

detected in the NFVI and the VIM should repair the failed entity (e.g. the VM).

Accordingly a failure may be detected by different managers in different layers of the

system, each of which may react to the event. This may cause interference. Thus, to

resolve the problem in a consistent manner and completely recover from a failure the

managers may need to collaborate and coordinate their actions.

Considering all these issues the following basic use cases can be identified (see table

1). These use cases assume that the failure is detected in the faulty entity (VNF

component or the VM).

Table 1: VNF high availability use cases

 VNF Statefullness VNF Redundancy Failure detection Use Case

VNF

yes yes VNF level only UC1

VNF & NFVI levels UC2

no VNF level only UC3

VNF & NFVI levels UC4

yes yes VNF level only UC5

VNF & NFVI levels UC6

no VNF level only UC7

VNF & NFVI levels UC8

As discussed, there is no guarantee that a fault manifests within the faulty entity. For

example, a memory leak in one process may impact or even crash any other process

running in the same execution environment. Accordingly, the repair of a failing entity

(i.e. the crashed process) may not resolve the problem and soon the same or another

process may fail within this execution environment indicating that the fault has

remained in the system. Thus, there is a need for extrapolating the failure to a wider

scope and perform the recovery at that level to get rid of the problem (at least

temporarily till a patch is available for our leaking process). This requires the

correlation of repeated failures in a wider scope and the escalation of the recovery

action to this wider scope. In the layered architecture this means that the manager

detecting the failure may not be the one in charge of the scope at which it can be

resolved, so the escalation needs to be forwarded to the manager in charge of that

scope, which brings us to an additional use case UC9.

We need to consider for each of these use cases the events detected, their impact on

other entities, and the actions triggered to recover the service provided by the VNF,

and to repair the faulty entity.

We are going to describe each of the listed use cases from this perspective to better

understand how the problem of service high availability can be tackled the best.

Before getting into the details it is worth mentioning the example end-to-end service

recovery times provided in the ETSI NFV REL document [REL] (see table 2). These

values may change over time including lowering these thresholds.

Table 2: Service availability levels (SAL)

SAL Service Recovery Time Threshold Customer Type Recommendation

1 5-6 seconds Network Operator

Control Traffic

Government/Regulatory

Emergency Services

Redundant resources

to be made available

on-site to ensure

fastrecovery.

2 10-15 seconds Enterprise and/or large

scale customers

Network Operators

service traffic

Redundant resources

to be available as a

mix of on-site and

off-site as

appropriate: On-site

resources to be

utilized for recovery

of real-time service;

Off-site resources to

be utilized for

recovery of data

services.

3 20-25 seconds General Consumer

Public and ISP Traffic

Redundant resources

to be mostly

available off-site.

Real-time services

should be recovered

before data services.

Note that even though SAL 1 of [REL] allows for 5-6 seconds of service recovery, for

many services this is too long and such outage causes a service level reset or the loss

of significant amount of data. Also the end-to-end service or network service may be

served by multiple VNFs. Therefore for a single VNF the desired service recovery

time is sub-second.

Note that failing over the service to another provider entity implies the redirection of

the traffic flow the VNF is handling. This could be achieved in different ways ranging

from floating IP addresses to load balancers. The topic deserves its own investigation,

therefore in these first set of use cases we assume that it is part of the solution without

going into the details, which we will address as a complementary set of use cases.

[REL] ETSI GS NFV-REL 001 V1.1.1 (2015-01)

2.1 Use Case 1: VNFC failure in a statefull VNF with

redundancy

Use case 1 represents a statefull VNF with redundancy managed by an HA manager,

which is part of the VNF (Fig 1). The VNF consists of VNFC1, VNFC2 and the HA

Manager. The latter managing the two VNFCs, e.g. the role they play in providing the

service named "Provided NF" (Fig 2).

The failure happens in one of the VNFCs and it is detected and handled by the HA

manager. On practice the HA manager could be part of the VNFC implementations or

it could be a separate entity in the VNF. The point is that the communication of these

entities inside the VNF is not visible to the rest of the system. The observable events

need to cross the boundary represented by the VNF box.

Fig 1. VNFC failure in a statefull VNF with built-in HA manager

Fig 2. Sequence of events for use case 1

As shown in Fig 2. initially VNFC2 is active, i.e. provides the Provided NF and

VNFC1 is a standby. It is not shown, but it is expected that VNFC1 has some means

to get the update of the state of the Provided NF from the active VNFC2, so that it

is prepared to continue to provide the service in case VNFC2 fails. The sequence of

events starts with the failure of VNFC2, which also interrupts the Provided NF. This

failure is detected somehow and/or reported to the HA Manager, which in turn may

report the failure to the VNFM and simultaneously it tries to isolate the fault by

cleaning up VNFC2.

Once the cleanup succeeds (i.e. the OK is received) it fails over the active role to

VNFC1 by setting it active. This recovers the service, the Provided NF is indeed

provided again. Thus this point marks the end of the outage caused by the failure

that need to be considered from the perspective of service availability.

The repair of the failed VNFC2, which might have started at the same time when

VNFC1 was assigned the active state, may take longer but without further impact

on the availability of the Provided NF service. If the HA Manager reported the

interruption of the Provided NF to the VNFM, it should clear the error condition.

The key points in this scenario are:

 The failure of the VNFC2 is not detectable by any other part of the system

except the consumer of the Provided NF. The VNFM only knows about the

failure because of the error report, and only the information this report provides.

I.e. it may or may not include the information on what failed.

 The Provided NF is resumed as soon as VNFC1 is assigned active regardless

how long it takes to repair VNFC2.

 The HA manager could be part of the VNFM as well. This requires an interface

to detect the failures and to manage the VNFC life-cycle and the role

assignments.

2.2 Use Case 2: VM failure in a statefull VNF with

redundancy

Use case 2 also represents a statefull VNF with its redundancy managed by an HA

manager, which is part of the VNF. The VNFCs of the VNF are hosted on the VMs

provided by the NFVI (Fig 3).

The VNF consists of VNFC1, VNFC2 and the HA Manager (Fig 4). The latter

managing the role the VNFCs play in providing the service - Provided NF. The VMs

provided by the NFVI are managed by the VIM.

In this use case it is one of the VMs hosting the VNF fails. The failure is detected and

handled at both the NFVI and the VNF levels simultaneously. The coordination

occurs between the VIM and the VNFM.

Fig 3. VM failure in a statefull VNF with built-in HA manager

Fig 4. Sequence of events for use case 2

Again initially VNFC2 is active and provides the Provided NF, while VNFC1 is the

standby. It is not shown in Fig 4., but it is expected that VNFC1 has some means to

learn the state of the Provided NF from the active VNFC2, so that it is able to

continue providing the service if VNFC2 fails. VNFC1 is hosted on VM1, while

VNFC2 is hosted on VM2 as indicated by the arrows between these objects in Fig

4.

The sequence of events starts with the failure of VM2, which results in VNFC2

failing and interrupting the Provided NF. The HA Manager detects the failure of

VNFC2 somehow and tries to handle it the same way as in use case 1. However

because the VM is gone the clean up either not initiated at all or interrupted as soon

as the failure of the VM is identified. In either case the faulty VNFC2 is considered

as isolated.

To recover the service the HA Manager fails over the active role to VNFC1 by

setting it active. This recovers the Provided NF. Thus this point marks again the end

of the outage caused by the VM failure that need to be considered from the

perspective of service availability. If the HA Manager reported the interruption of

the Provided NF to the VNFM, it should clear the error condition.

On the other hand the failure of the VM is also detected in the NFVI and reported to

the VIM. The VIM reports the VM failure to the VNFM, which passes on this

information to the HA Manager of the VNF. This confirms for the VNF HA

Manager the VM failure and that it needs to wait with the repair of the failed

VNFC2 until the VM is provided again. The VNFM also confirms towards the VIM

that it is safe to restart the VM.

The repair of the failed VM may take some time, but since the service has been

failed over to VNFC1 in the VNF, there is no further impact on the availability of

Provided NF.

When eventually VM2 is restarted the VIM reports this to the VNFM and the

VNFC2 can be restored.

The key points in this scenario are:

 The failure of the VM2 is detectable at both levels VNF and NFVI, therefore

both the HA manager and the VIM reacts to it. It is essential that these

reactions do not interfere, e.g. if the VIM tries to protect the VM state at

NFVI level that would conflict with the service failover action at the VNF

level.

 While the failure detection happens at both NFVI and VNF levels, the time

frame within which the VIM and the HA manager detect and react may be very

different. For service availability the VNF level detection, i.e. by the HA

manager is the critical one and expected to be faster.

 The Provided NF is resumed as soon as VNFC1 is assigned active regardless

how long it takes to repair VM2 and VNFC2.

 The HA manager could be part of the VNFM as well. This requires an interface

to detect failures in/of the VNFC and to manage its life-cycle and role

assignments.

 The VNFM may not know for sure that the VM failed until the VIM reports it,

i.e. whether the VM failure is due to host, hypervisor, host OS failure. Thus the

VIM should report/alarm and log VM, hypervisor, and physical host failures.

The use cases for these failures are similar with respect to the Provided NF.

 The VM repair also should start with the fault isolation as appropriate for the

actual failed entity, e.g. if the VM failed due to a host failure a host may be

fenced first.

 The negotiation between the VNFM and the VIM may be replaced by

configured repair actions. E.g. on error restart VM in initial state, restart VM

from last snapshot, or fail VM over to standby.

2.3 Use Case 3: VNFC failure in a statefull VNF with no

redundancy

Use case 3 also represents a statefull VNF, but it stores its state externally on a virtual

disk provided by the NFVI. It has a single VNFC and it is managed by the VNFM

(Fig 5).

In this use case the VNFC fails and the failure is detected and handled by the VNFM.

Fig 5. VNFC failure in a statefull VNF with no redundancy

Fig 6. Sequence of events for use case 3

The VNFC periodically checkpoints the state of the Provided NF to the external

storage, so that in case of failure the Provided NF can be resumed (Fig 6).

When the VNFC fails the Provided NF is interrupted. The failure is detected by the

VNFM somehow, which to isolate the fault first cleans up the VNFC, then if the

cleanup is successful it restarts the VNFC. When the VNFC starts up, first it reads the

last checkpoint for the Provided NF, then resumes providing it. The service outage

lasts from the VNFC failure till this moment.

The key points in this scenario are:

 The service state is saved in an external storage which should be highly

available too to protect the service.

 The NFVI should provide this guarantee and also that storage and access

network failures are handled seamlessly from the VNF's perspective.

 The VNFM has means to detect VNFC failures and manage its life-cycle

appropriately. This is not required if the VNF also provides its availability

management.

 The Provided NF can be resumed only after the VNFC is restarted and it has

restored the service state from the last checkpoint created before the failure.

 Having a spare VNFC can speed up the service recovery. This requires that the

VNFM coordinates the role each VNFC takes with respect to the Provided NF.

I.e. the VNFCs do not act on the stored state simultaneously potentially

interfering and corrupting it.

2.4 Use Case 4: VM failure in a statefull VNF with no

redundancy

Use case 4 also represents a statefull VNF without redundancy, which stores its state

externally on a virtual disk provided by the NFVI. It has a single VNFC managed by

the VNFM (Fig 7) as in use case 3.

In this use case the VM hosting the VNFC fails and the failure is detected and handled

by the VNFM and the VIM simultaneously.

Again, the VNFC regularly checkpoints the state of the Provided NF to the external

storage, so that it can be resumed in case of a failure (Fig 8).

When the VM hosting the VNFC fails the Provided NF is interrupted.

On the one hand side, the failure is detected by the VNFM somehow, which to isolate

the fault tries to clean the VNFC up which cannot be done because of the VM failure.

When the absence of the VM has been determined the VNFM has to wait with

restarting the VNFC until the hosting VM is restored. The VNFM may report the

problem to the VIM, requesting a repair.

Fig 7. VM failure in a statefull VNF with no redundancy

Fig 8. Sequence of events for use case 4

On the other hand the failure is detected in the NFVI and reported to the VIM, which

reports it to the VNFM, if the VNFM hasn't reported it yet. If the VNFM has

requested the VM repair or if it acknowledges the repair, the VIM restarts the VM.

Once the VM is up the VIM reports it to the VNFM, which in turn can restart the

VNFC.

When the VNFC restarts first it reads the last checkpoint for the Provided NF, to be

able to resume it. The service outage last until this is recovery completed.

The key points in this scenario are:

 The service state is saved in external storage which should be highly available

to protect the service.

 The NFVI should provide such a guarantee and also that storage and access

network failures are handled seamlessly from the perspective of the VNF.

 The Provided NF can be resumed only after the VM and the VNFC are

restarted and the VNFC has restored the service state from the last checkpoint

created before the failure.

 The VNFM has means to detect VNFC failures and manage its life-cycle

appropriately. Alternatively the VNF may also provide its availability

management.

 The VNFM may not know for sure that the VM failed until the VIM reports

this. It also cannot distinguish host, hypervisor and host OS failures. Thus the

VIM should report/alarm and log VM, hypervisor, and physical host failures.

The use cases for these failures are similar with respect to the Provided NF.

 The VM repair also should start with the fault isolation as appropriate for the

actual failed entity, e.g. if the VM failed due to a host failure a host may be

fenced first.

 The negotiation between the VNFM and the VIM may be replaced by

configured repair actions.

 VM level redundancy, i.e. running a standby or spare VM in the NFVI would

allow faster service recovery for this use case, but by itself it may not protect

against VNFC level failures. I.e. VNFC level error detection is still required.

2.5 Use Case 5: VNFC failure in a stateless VNF with

redundancy

Use case 5 represents a stateless VNF with redundancy, i.e. it is composed of VNFC1

and VNFC2. They are managed by an HA manager within the VNF. The HA manager

assigns the active role to provide the Provided NF to one of the VNFCs while the

other remains a spare meaning that it has no state information for the Provided NF

(Fig 9) therefore it could replace any other VNFC capable of providing the Provided

NF service.

In this use case the VNFC fails and the failure is detected and handled by the HA

manager.

Fig 9. VNFC failure in a stateless VNF with redundancy

Initially VNFC2 provides the Provided NF while VNFC1 is idle or might not even

been instantiated yet (Fig 10).

When VNFC2 fails the Provided NF is interrupted. This failure is detected by the HA

manager, which as a first reaction cleans up VNFC2 (fault isolation), then it assigns

the active role to VNFC1. It may report an error to the VNFM as well.

Since there is no state information to recover, VNFC1 can accept the active role right

away and resume providing the Provided NF service. Thus the service outage is over.

If the HA manager reported an error to the VNFM it should clear it at this point.

The key points in this scenario are:

 The spare VNFC may be instantiated only once the failure of active VNFC is

detected.

 As a result the HA manager's role might be limited to life-cycle management,

i.e. no role assignment is needed if the VNFCs provide the service as soon as

they are started up.

 Accordingly the HA management could be part of a generic VNFM provided it

is capable of detecting the VNFC failures. Besides the service users, the VNFC

failure may not be detectable at any other part of the system.

 Also there could be multiple active VNFCs sharing the load of Provided NF

Fig 10. Sequence of events for use case 5

and the spare/standby may protect all of them.

 Reporting the service failure to the VNFM is optional as the HA manager is in

charge of recovering the service and it is aware of the redundancy needed to do

so.

2.6 Use Case 6: VM failure in a stateless VNF with

redundancy

Similarly to use case 5, use case 6 represents a stateless VNF composed of VNFC1

and VNFC2, which are managed by an HA manager within the VNF. The HA

manager assigns the active role to provide the Provided NF to one of the VNFCs

while the other remains a spare meaning that it has no state information for the

Provided NF (Fig 11) and it could replace any other VNFC capable of providing the

Provided NF service.

As opposed to use case 5 in this use case the VM hosting one of the VNFCs fails. This

failure is detected and handled by the HA manager as well as the VIM.

Fig 11. VM failure in a stateless VNF with redundancy

Fig 12. Sequence of events for use case 6

Initially VNFC2 provides the Provided NF while VNFC1 is idle or might not have

been instantiated yet (Fig 12) as in use case 5.

When VM2 fails VNFC2 fails with it and the Provided NF is interrupted. The failure

is detected by the HA manager and by the VIM simultaneously and independently.

The HA manager's first reaction is trying to clean up VNFC2 to isolate the fault. This

is considered to be successful as soon as the disappearance of the VM is confirmed.

After this the HA manager assigns the active role to VNFC1. It may report the error to

the VNFM as well requesting a VM repair.

Since there is no state information to recover, VNFC1 can accept the assignment right

away and resume the Provided NF service. Thus the service outage is over. If the HA

manager reported an error to the VNFM for the service it should clear it at this point.

Simultaneously the VM failure is detected in the NFVI and reported to the VIM,

which reports it to the VNFM, if the VNFM hasn't requested a repair yet. If the

VNFM requested the VM repair or if it acknowledges the repair, the VIM restarts the

VM.

Once the VM is up the VIM reports it to the VNFM, which in turn may restart the

VNFC if needed.

The key points in this scenario are:

 The spare VNFC may be instantiated only after the detection of the failure of

the active VNFC.

 As a result the HA manager's role might be limited to life-cycle management,

i.e. no role assignment is needed if the VNFC provides the service as soon as it

is started up.

 Accordingly the HA management could be part of a generic VNFM provided if

it is capable of detecting failures in/of the VNFC and managing its life-cycle.

 Also there could be multiple active VNFCs sharing the load of Provided NF

and the spare/standby may protect all of them.

 The VNFM may not know for sure that the VM failed until the VIM reports

this. It also cannot distinguish host, hypervisor and host OS failures. Thus the

VIM should report/alarm and log VM, hypervisor, and physical host failures.

The use cases for these failures are similar with respect to each Provided NF.

 The VM repair also should start with the fault isolation as appropriate for the

actual failed entity, e.g. if the VM failed due to a host failure a host needs to be

fenced first.

 The negotiation between the VNFM and the VIM may be replaced by

configured repair actions.

 Reporting the service failure to the VNFM is optional as the HA manager is in

charge recovering the service and it is aware of the redundancy needed to do

so.

2.7 Use Case 7: VNFC failure in a stateless VNF with no

redundancy

Use case 7 represents a stateless VNF composed of a single VNFC, i.e. with no

redundancy. The VNF and in particular its VNFC is managed by the VNFM through

managing its life-cycle (Fig 13).

In this use case the VNFC fails. This failure is detected and handled by the VNFM.

This use case requires that the VNFM can detect the failures in the VNF or they are

reported to the VNFM.

The failure is only detectable at the VNFM level and it is handled by the VNFM

restarting the VNFC.

Fig 13. VNFC failure in a stateless VNF with no redundancy

The VNFC is providing the Provided NF when it fails (Fig 14). This failure is

detected or reported to the VNFM, which has to clean up the VNFC to isolate the fault.

After cleanup success it can proceed with restarting the VNFC, which as soon as it is

up it starts to provide the Provided NF as there is no state to recover.

Thus the service outage is over, but it has included the entire time needed to restart the

VNFC. Considering that the VNF is stateless this may not be significant still.

The key points in this scenario are:

 The VNFM has to have the means to detect VNFC failures and manage its

life-cycle appropriately. This is not required if the VNF comes with its

availability management, but this is very unlikely for such stateless VNFs.

Fig 14. Sequence of events for use case 7

 The Provided NF can be resumed as soon as the VNFC is restarted, i.e. the

restart time determines the outage.

 In case multiple VNFCs are used they should not interfere with one another,

they should operate independently.

2.8 Use Case 8: VM failure in a stateless VNF with no

redundancy

Use case 8 represents the same stateless VNF composed of a single VNFC as use case

7, i.e. with no redundancy. The VNF and in particular its VNFC is managed by the

VNFM through managing its life-cycle (Fig 15).

In this use case the VM hosting the VNFC fails. This failure is detected and handled

by the VNFM as well as by the VIM.

The VNFC is providing the Provided NF when the VM hosting the VNFC fails (Fig

16). This failure may be detected or reported to the VNFM as a failure of the VNFC.

The VNFM may not be aware at this point that it is a VM failure. Accordingly its first

reaction as in use case 7 is to clean up the VNFC to isolate the fault. Since the VM is

gone, this cannot succeed and the VNFM becomes aware of the VM failure through

this or it is reported by the VIM. In either case it has to wait with the repair of the

VMFC until the VM becomes available again.

Fig 15. VM failure in a stateless VNF with no redundancy

Fig 16. Sequence of events for use case 8

Meanwhile the VIM also detects the VM failure and reports it to the VNFM unless the

VNFM has already requested the VM repair. After the VNFM confirming the VM

repair the VIM restarts the VM and reports the successful repair to the VNFM, which

in turn can start the VNFC hosted on it.

Thus the recovery of the Provided NF includes the restart time of the VM and of the

VNFC.

The key points in this scenario are:

 The VNFM has to have the means to detect VNFC failures and manage its

life-cycle appropriately. This is not required if the VNF comes with its

availability management, but this is very unlikely for such stateless VNFs.

 The Provided NF can be resumed only after the VNFC is restarted on the

repaired VM, i.e. the restart time of the VM and the VNFC determines the

outage.

 In case multiple VNFCs are used they should not interfere with one another,

they should operate independently.

 The VNFM may not know for sure that the VM failed until the VIM reports

this. It also cannot distinguish host, hypervisor and host OS failures. Thus the

VIM should report/alarm and log VM, hypervisor, and physical host failures.

The use cases for these failures are similar with respect to each Provided NF.

 The VM repair also should start with the fault isolation as appropriate for the

actual failed entity, e.g. if the VM failed due to a host failure the host needs to

be fenced first.

 The repair negotiation between the VNFM and the VIM may be replaced by

configured repair actions.

 VM level redundancy, i.e. running a standby or spare VM in the NFVI would

allow faster service recovery for this use case, but by itself it may not protect

against VNFC level failures. I.e. VNFC level error detection is still required.

2.9 Use Case 9: Repeated VNFC failure in a stateless VNF

with no redundancy

Finally use case 9 represents again a stateless VNF composed of a single VNFC as in

use case 7, i.e. with no redundancy. The VNF and in particular its VNFC is managed

by the VNFM through managing its life-cycle.

In this use case the VNFC fails repeatedly. This failure is detected and handled by the

VNFM, but results in no resolution of the fault (Fig 17) because the VNFC is

manifesting a fault, which is not in its scope. I.e. the fault is propagating to the VNFC

from a faulty VM or host, for example. Thus the VNFM cannot resolve the problem

by itself.

Fig

17. VM failure in a stateless VNF with no redundancy

To handle this case the failure handling needs to be escalated to the a bigger fault zone

(or fault domain), i.e. a scope within which the faults may propagate and manifest. In

case of the VNF the bigger fault zone is the VM and the facilities hosting it, all

managed by the VIM.

Fig

18. VM failure in a stateless VNF with no redundancy

Thus the VNFM should request the repair from the VIM (Fig 18).

Since the VNFM is only aware of the VM, it needs to report an error on the VM and it

is the VIM's responsibility to sort out what might be the scope of the actual fault

depending on other failures and error reports in its scope.

Fig 19. Sequence of events for use case 9

This use case starts similarly to use case 7, i.e. the VNFC is providing the Provided

NF when it fails (Fig 17). This failure is detected or reported to the VNFM, which

cleans up the VNFC to isolate the fault. After successful cleanup the VNFM proceeds

with restarting the VNFC, which as soon as it is up starts to provide the Provided NF

again as in use case 7.

However the VNFC failure occurs N times repeatedly within some Probation time for

which the VNFM starts the timer when it detects the first failure of the VNFC. When

the VNFC fails once more still within the probation time the Escalation counter

maximum is exceeded and the VNFM reports an error to the VIM on the VM hosting

the VNFC as obviously cleaning up and restarting the VNFC did not solve the

problem.

When the VIM receives the error report for the VM it has to isolate the fault by

cleaning up at least the VM. After successful cleanup it can restart the VM and once it

is up report the VM repair to the VNFM. At this point the VNFM can restart the

VNFC, which in turn resumes the Provided VM.

In this scenario the VIM needs to evaluate what may be the scope of the fault to

determine what entity needs a repair. For example, if it has detected VM failures on

that same host, or other VNFMs reported errors on VMs hosted on the same host, it

should consider that the entire host needs a repair.

The key points in this scenario are:

 The VNFM has to have the means to detect VNFC failures and manage its

life-cycle appropriately. This is not required if the VNF comes with its

availability management, but this is very unlikely for such stateless VNFs.

 The VNFM needs to correlate VNFC failures over time to be able to detect

failure of a bigger fault zone. One way to do so is through counting the failures

within a probation time.

 The VIM cannot detect all failures caused by faults in the entities under its

control. It should be able to receive error reports and correlate these error

reports based on the dependencies of the different entities.

 The VNFM does not know the source of the failure, i.e. the faulty entity.

 The VM repair should start with the fault isolation as appropriate for the actual

failed entity, e.g. if the VM failed due to a host failure the host needs to be

fenced first.

3 Concluding remarks

This use case document outlined the model and some failure modes for NFV systems.

These are an initial list. The OPNFV HA project team is continuing to grow the list

of use cases and will issue additional documents going forward. The basic use cases

and service availability considerations help define the key considerations for each use

case taking into account the impact on the end service.

The use case document along with the requirements documents and gap analysis help

set context for engagement with various upstream projects.

