Project Name:
· Proposed name for the project: Octopus -> Basic integration
· Proposed name for the repository: TBD
· Project Categories:
· Documentation (developers user guide)
· Requirements (guideline and high level requirement for integration)
· Integration & Testing (main part)
· Collaborative Development (affecting all upstream projects)
Project description:
Summary
The CI project provides the starting point for all OPNFV development activities. It starts by integrating stable versions of basic upstream projects, and from there creates a full development environment for OPNFV including automatic builds and basic verification.
The following list shows all basic tasks, and explains whether they are part of the basic integration project.
· Select a basic set of upstream projects to be integrated in the first step
-> start with input from F2F, adjust only if necessary.
· Select a basic hardware definition for the build servers and for the basic verification
-> start with selection by LF.
· Select the tools for code repository, build processes and automation
-> start with selection by LF.
· Define the image formats for code deployment in the test environment
-> move to new separate project: “Infrastructure deployment”
· Define the branching rules for the code repositories
-> part of the development process defined by TSC
· Provide the code repositories
-> will be done by LF.
· Integrate the basic set of upstream projects
OK. Basic integration project
· Implement build process for developers
-> start off with basic build tools,
later move to new separate project: “Build environment” if better tools are needed.
· Implement automatic build process on central servers
-> start off with basic build tools,
later move to new separate project: “Build environment” if better tools are needed.
·
· Provide or implement basic test objects (VNFs and VNFM, NFVO)
-> will be covered by a project from test&performance team (VNFs come from “VNF deployment test cases”)
· Provide necessary OPNFV glue code to integrate different upstream project codes.
OK. Basic integration project
· Implement automatic process for basic verification of the build images on central servers
-> move to new separate project: “Build and test automation” (?)
· Implement the process for continuous upgrade to newer versions of upstream projects
-> cover by project “Simultaneous Release” and development process.
· Implement the process for adding more upstream projects to the automated build and verification
-> cover by second part “Continuous Integration”
· Execute the continuous automated builds and basic verification
-> cover by second part “Continuous Integration”
The above topics interlink to each other very closely, so they are bundled in a single project. In principle the following projects together provide the CI:
· Basic Integration
· Build Environment & Infrastructure Deployment & Continuous Integration
· Simultaneous Release
·
Additional Inputs come from
· Linux Foundation existing infrastructure
· Development process (TSC)
· Test&Performance

Missing work items?
· ??

Next Steps:

· Update project proposal “Basic Integration”
· Create project plan

· Create other project proposals

Subsections to be updated after decision on the project split…..
Basic set of upstream projects
The initial set was already identified during face-to-face on October 2, 2014:
· Open Stack - augmenting and starting on top, subprojects to be selected, e.g.:.
· Electron(NFV Open Platform Management Module) – New CLI
· Keystone (Identity Module)
· Nova (Compute Module)
· Glance (Image Catalog)
· Neutron (Network module) / with SDN option through ODL like project.
· Cinder (Block Storage) /with CEPH option for integration and
· Swift (Object Storage)
· Horizon (Dashboard/GUI) – [Electron Dashboard as Horizon Extension]
· Heat (Orchestration of Stack)
· Cielometer (Telemetry Module)
· KVM / QEMU / libvirt (Support under Nova)
· Open Daylight (Support along with Neutron)
· Linux Kernel (Supported Compute nodes)
· OVS (DPDK/ODP) note: OVS is known to be too slow, so need to enhance and provide alternate to meet the SDN/DP latency & scale requirements
· CEPH - block, data, image… (can start with Cinder and progress to Ceph as it evolves; some concerns, but use as start point and add alternate solutions later)
The initial set is meant to be as small as possible, so the initial environment can be provided early.
Of course together with any of those projects, also all dependencies, e.g. MySQL (or some other SQL DBs) as the database, RabbitMQ (or some other MQs) as the message bus, etc.. must be included. This includes selection of some alternatives or providing multiple options in later steps.
Additional upstream projects will be added when the initial process is established. Examples of upstream projects that may be added later:
· Docker style environments
· DPI solutions
Guidelines for selection of upstream code:
1. The Source code meets the requirements of SWA-1-5 as per NFV specs to a larger extent and there is larger community acceptance of the same.
2. The Source code is Open source and with no License or IPR restrictions with proper releases from the Community and or Vendors associated.
3. The Source code is interafacable with minimum efforts and fit the OPNFV framework.
4. The Community or Vendor is willing to contribute and develop the source in OPNFV community to make it acceptable for alignment with upstream releases.
5. The timelines of upstream code availability is in accordance with OPNFV time lines.
6. Technical Steering Committee will have final say in accepting or rejecting the Contribution and upstream codes to ensure fair process. The objective is to ensure that Stack’s build for OPNFV 1.0 are consistent with Reference Models in Normative documents of NFV.
Basic Hardware selection
· Central build servers for the automatic builds
· Recommendations for developers
Tools for Code Repository, Build Processes and Automation
Octopus will create a hierarchical build system that uses the build tools as defined by each of the upstream projects and combines them via some scripting. Therefore the necessary tools will be a superset of the tools used by the upstream projects.
In some cases however, OPNFV may also just use complete binaries from an upstream project. In that case, OPNFV doesn’t need to use the build process of upstream projects again, but then patches for the upstream project cannot be developed or verified in OPNFV environment.
Additional tools need to be selected for the automated (periodic) build and basic verification, as well as deployment of the build images on target servers in the test environments.
Examples:
· Code repository: git /Github or mercurial or svn
· Scripting: python/bash and Orchestration tools like Salt/Ansible for VNF lifecycle
· Automation: Jenkins
· Development: DevStack
· Deployment: Pacstack/Stackforge & Sleeted Vendor Offerings for reference implementation
· Verification: Tempest
· NFVI Tools – Vagrant, Cobbler and Baremetal builders like Ironic
· Service Orchestration : Java based for North Bound if taken up in NFVOPS 1.0
· …
Image formats for code deployment in the test environment
Select the format to match all build tools and deployment requirements e.g. qcow2 with metatdata in container formats (OVF) and other qemu image converters if IaaS platform lacks any
Define the branching rules for the code repositories
Clearly define when branches in the repositories shall be created or merged.
The branching strategy needs to define both:
· Usage of branching by OPNFV development (6 monthly cycle with few snapshots)
· Usage of branches of upstream projects and their relation to branching in OPNFV repository (e.g. periodic merge from upstream branches after their successful builds or only use stable branches), also how to use branching when patches to upstream projects are contributed to the upstream project but already active in OPNFV, etc.
Provide the code repositories
Provision and make available to all developers. (All via Github)
Maintain the repository.
Integrate the basic set of upstream projects
Develop the changes on the basic set of upstream project that are necessary to make them run together as a basis for an NFVI + VIM layer as defined in the NFV architectural framework.
Implement build process for developers
Develop a simple build system that can be used by the developers of OPNFV. (e.g. Can use DevStack extensions for OPNFV)
Best practice would be to minimize differences to central build.
Implement automatic build process on central servers
Develop automation of the build process.
Decide on frequency (e.g. start biweekly and bring it down to daily) and execute the builds.
Tagging of the builds.
Provide or implement basic test objects (VNFs, and VNFM, NFVO)
Select from open source or implement basic test objects to be used for verification. (like Tempest Integration test Suite in Openstack)
Implement automatic process for basic verification of the build images on central servers
Develop automation of the basic verification using the test objects.
Implement the process for continuous upgrade to newer versions of upstream projects
(controller Sourcing based on Gerrit Approvals)
While all previous steps just create a single version of the OPNFV platform and development like in other open source projects, this step provides the environment to synchronize the OPNFV build process with upstream projects as they move to newer versions.
Note that Octopus will not be responsible for the decision when to synchronize, but provide the necessary mechanisms in the automated build and verification.
Implement the process for adding more upstream projects to the automated build and verification
(TSC Approval Basis)
Adding more upstream projects in many cases will need adjustments in the tool chain.
Execute the continuous automated builds and basic verification
(CI with Release testing)
Octopus covers both the initial creation of the development and build environment, as well as maintaining the environment and executing the automated builds and tests.
Scope:
Octopus will create the complete basic development and build environment for OPNFV and start the periodic execution of the automatic build and basic verification. It will provide the processes for development, for upgrade to newer versions of upstream projects and for adding more components or upstream projects.
Octopus will not decide when and which upstream project to be added to OPNFV.
Testability:
(optional, Project Categories: Integration & Testing)
not applicable
Documentation:
(optional, Project Categories: Documention)
The whole environment as created by Octopus will be well documented with user guides for all developers. For any specifics in the upstream projects, it will refer to the documentation in the upstream project.
Require Management API for OPNFV Platform and Tools for OPNFV CLI/GUI.
Dependencies:
None, except on upstream projects.
Octopus is the initial project others will depend on.
Committers and Contributors:
Companies/affiliations committed to the project and willing to provide substantial resources:
· Huawei (10), contacts: Uli Kleber (ulrich.kleber ad huawei.com), Prakash Ramchandran (p.ramchandran ad huawei.com)
· Cisco, contact: Ian Wells (iawells ad cisco.com)
· RedHat
· ..
Maintainers:
Committers:
Planned deliverables:
See project description
Proposed Release Schedule:
· 1st Alfa release 6 months from start date
· to be dependent on start version like Juno on Openstack in Nov 1st week as one to launch.

